Exelon Generation LLC's Responses to the Board's Questions

ATTACHMENT 9

Exelon Generation Company, LLC Dresden Nuclear Power Station 6500 North Dresden Road Morris, IL 60450-9765

www.exeloncorp.com

July 24, 2012

Mr. Roger Callaway (CAS-19)
Wastewater Compliance Unit Manager
Illinois Environmental Protection Agency
Bureau of Water
Compliance Assurance Section #19
1021 North Grand Avenue East
P.O. Box 19276
Springfield, Illinois 62794-9274

Subject:

Temperature & Environmental Condition Report

Provisional Variance (IEPA 12-22) NPDES Permit No. IL0002224 Dresden Nuclear Generation Station

PMLTR 12-0048

Dear Mr. Callaway,

On July 6, 2012, Dresden Nuclear Generation Station was issued the above referenced Provisional Variance for the thermal limits indicated in Special Condition 3C of the NPDES Permit IL0002224. As per Conditions C & D of this provisional variance, Dresden Station is to provide a Temperature and Environmental Condition Report within (7) seven days of the PV expiration date of July 16, 2012. This letter contains the temperature and environmental conditions for the period of July 6, 2012 through July 20, 2012 (four days after PV expiration).

Temperature Condition Summary

Discharge Water:

As documented on the attached Thermal Data, at no time did the Dresden Station exceed the 95°F discharge limit as stipulated in the Provisional Variance. Dresden Station began discharging above 93°F on July 6, 2012 at 18:00 through July 7, 2012 at 01:30, and again on July 7, 2012 at 09:45 through July 7, 2012 at 20:15, with a maximum temperature of 93.4°F and 94.2°F, respectively. The average temperature of the discharge for the entire period of the provincial variance was 90.3°F with a maximum of 94.2°F on July 7, 2012.

Receiving Water:

As documented on the attached Thermal Data, Dresden Station receiving waters were elevated during the beginning of the variance period with a maximum of 93.1 on July 7, 2012. These temperatures are higher than normal for this time of year. The Dresden Station intake temperature was used as the upstream river temperature during the analysis. The Dresden intake temperatures are representative of the Kankakee River upstream of the Dresden Station discharge.

Environmental Condition Summary

As documented on the attached Environmental Observation Logs, the only mortalities noted occurred on July 8, 2012 at 20:15. Four (4) catfish were observed floating in the Dresden Lock & Dam. This was not attributed to any thermal discharge effects as catfish are less sensitive than other fish found in the area. No other fish or aquatic mortalities were observed. Dresden Station personnel performed visual inspections of discharge areas at least four times per day and an additional four subsequent days beyond the expiration of the provincial variance. During this time there were no reports of any stress to fish or aquatic life.

As always, Dresden Station continued to manage its equipment to minimize the discharge temperature during the entire variance period. Should you require any further information or have any questions, please contact Ronald Novy of my staff at 815-416-3211.

Sincerely,

Shane Marik

Shane Marih

Dresden Station Plant Manager

Attachments: (1) Thermal Data

(2) Environmental Observation Logs

CC:

J. Petro

D. Leggett

J. Gould

M. Davis

File

Attachment (2), Environmental Observation Logs

7/6/2012	Discharge Canal temperature has reached 93F.					
7,0,2012	Beginning the provisional variance per IEPA 12-22.					
	Commencing inspections to assess any mortalities to					
	fish and other aquatic life. Attempted to notify					
	Roger Callaway, Illinois EPA, by telephone at 217-					
	782-9720 that the provisional variance has begun,					
	but there was no answer and no answering machine.					
	Notified M. Davis to contact IEPA as required by					
	other means and notify the shift when complete.					
7/7/2012	09:00 - Dresden Island lock master (Jay McNall)					
////2012	reports no signs of adverse effects to local marine					
	life. HVO (Z. Hall) reports inspection of the area					
	where Dresden Station discharge meets the Illinois					
	River shows no mortalities to fish or other aquati					
	life.					
	10.00					
	12:00 - Dresden Island lock master (Jay McNall)					
	reports no signs of adverse effects to local marine					
]	life. HVO (Z. Hall) reports inspection of the area					
	where Dresden Station discharge meets the Illinois					
	River shows no mortalities to fish or other aquatic					
	life.					
}						
	16:00 - Dresden Island lock master (T. Valley)					
	reports no signs of adverse effects to local marine					
	life. HVO (Z. Hall) reports inspection of the area					
	where Dresden Station discharge meets the Illinois					
	River shows no mortalities to fish or other aquatic					
	life.					
7/8/2012	08:20 - Dresden Island lock master (Jay McNall)					
ļ <u></u>	reports no signs of adverse effects to local marine					
	life. HVO (Z. Hall) reports inspection of the area					
	where Dresden Station discharge meets the Illinois					
1	River shows no mortalities to fish or other aquatic					
	life.					
	12:20 - Dresden Island lock master (Jay McNall)					
	reports no signs of adverse effects to local marine					
	life. HVO (Z. Hall) reports inspection of the area					
·	where Dresden Station discharge meets the Illinois					
	River shows no mortalities to fish or other aquatic					
	life.					
	16:09 - Dresden Island lock master (T. Valley)					
	reports no signs of adverse effects to local marine					
	life. HVO (Z. Hall) reports inspection of the area					
	where Dresden Station discharge meets the Illinois					
	River shows no mortalities to fish or other aquatic					
	=					
i I	life.					

7/9/2012	20:15 - Dresden Island lock master (T. Valley) reports 4 dead catfish. HVO (A. Davis) reports inspection of the area where Dresden Station discharge meets the Illinois River shows 4 dead fish. Morgan Davis and Station Duty Manager(Sipek) notified by SM (Feigl). IR 1384353 generated. 08:20 - Dresden Island lock master (Larry Hibler)
77 97 2012	reports no signs of adverse effects to local marine life. HVO (Z. Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	12:02 - Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life. HVO (Z. Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	16:02 - Dresden Island lock master (Jay McNall) reports no signs of adverse effects to local marine life. HVO (C. Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	20:14 - Effluent temperatures, based on the average of computer points E355 and E356, are 89.8 °F. Dresden Island lock master (Jay Gutierrez) reports no signs of adverse effects to local marine life. HVO (C. Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
7/10/2012	08:20 - Dresden Island lock master (Jeff Blecekovich) reports no signs of adverse effects to local marine life. HVO (Kuzava) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	12:00 - Dresden Island lock master (Jeff Blecekovich) reports no signs of adverse effects to local marine life. HVO (Kuzava) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	16:02 - Dresden Island lock master (J. McNall) reports no signs of adverse effects to local marine

	life. HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	20:30 - Dresden Island lock master (J. McNall) reports no signs of adverse effects to local marine life. HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Dresden Island lock master (J. McNall) reports no signs of adverse effects to local marine life.
7/11/2012	08:20 - Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life. HVO (Kuzava) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	12:02 - Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life. HVO (Kuzava) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	17:48 - Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life. HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	20:00 - Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life. HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
7/12/2012	10:20 - Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	13:00 - Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area

	where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life
	17:30 - Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life. HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	19:45 - HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life.
7/13/2012	09:35 - Dresden Island lock master (Jeff Blezkovich) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	12:34 - Dresden Island lock master (Jeff Blezkovich) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	16:55 - Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life. HVO (C. Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	19:24 - Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life. HVO (C. Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
7/14/2012	10:00 - Dresden Island lock master (Jay Gutierrez) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	13:29 - Dresden Island lock master (Mike Walsh)

	reports no signs of adverse effects to local marine life. 14HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. 16:15 - Dresden Island lock master (Mike Campo) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	20:55 - Dresden Island lock master (Campo) reports no signs of adverse effects to local marine life. HVO (Palutsis) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
7/15/2012	09:25 - Dresden Island lock master (Mike Walsh) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	12:48 Dresden Island lock master (Mike Walsh) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	16:48 Dresden Island lock master (Tyron Valley) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	20:05 - Dresden Island lock master (Valley) reports no signs of adverse effects to local marine life. HVO (Osburn) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
7/16/2012	08:55 Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	12:42 Dresden Island lock master (Larry Hibler)

	reports no signs of adverse effects to local marine life. HVO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	16:28- Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life. HVO (Komperda) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	20:43 - Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life. HVO (Kompeda) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
7/17/2012	08:25 - Dresden Island lock master (Jay Mcnall) reports no signs of adverse effects to local marine life. Bernardi) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	12:09 Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life. HVO (Bernardi) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	16:34- Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life. HVO (Komperda) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	19:47 - HVO (Kompeda) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Dresden Island lock master (Tyrone Valley) reports no signs of adverse effects to local marine life.
7/18/2012	09:00 - Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life. HVO (Bernardi) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic

	life.
	12:40 Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life. HVO (Bernardi) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	16:27 - Dresden Island lock master (Mike Campo) reports no signs of adverse effects to local marine life. HVO (Komperda) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	20:00 Dresden Island lock master (Mike Campo) reports no signs of adverse effects to local marine life. HVO (Komperda) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
7/19/2012	16:30 - Dresden Island lock master (Walsh) reports no signs of adverse effects to local marine life.
	17:40 - HVO (Komperda) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	19;50 - HVO (Komperda) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	20:15 - Effluent temperatures, based on the average of computer points E355 and E356, are 90.3 deg F. Dresden Island lock master (Walsh) reports no signs of adverse effects to local marine life.
7/20/2012	16:20 Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.
	11:22 Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.

EN-AA-105 Revision 4 Page 14 of 14

Attachment 2 Example Verification Completion Form Page 1 of 1

Verification Documentation

vernication pocumentation
Correspondence/Letter number: PMITR 12-0048 Origination Date: 7/23/12
Agency/External Stakeholder: IEPA Submittal Due Date: 7/22/9
Recipient of Correspondence: Residence (name and title # known)
Purpose of Submittal: Class permit report For IEPA 12-22
Originating Office: Cantera Kennett Square Site (specify)
Preparer: Pondo Non July 7/23/12 (print) (date)
Peer Reviewer: MWW Daus WWW (sign) 7/23/12
Certified Mail Return Receipt Requested:
Approvals (check box if applicable)
Angliagh Barrier Cinnahan at Parings Professor

	Applicable	Date Review Needed	Signature of Reviewer	Date of Review	
Site Departments		***************************************			
Chemistry) AT	7/23/12	Maha	7-23-1	
Operations			4		
Engineering					
Regulatory Assurance					
Other:(specify)	П				
Corporate					
SME/FAM					
Site Management					
Plant Manager	×				
Site Vice President	70		☐ Report Signed and Approved		

Attach additional page for comments.

Exelon Generation LLC's Responses to the Board's Questions

ATTACHMENT 10

Exelon Generation Company, LLC Dresden Nuclear Power Station 6500 North Dresden Road Morris, IL 60450-9765

www.exeloncorp.com

August 8, 2012

Mr. Roger Callaway (CAS-19)
Wastewater Compliance Unit Manager
Illinois Environmental Protection Agency
Bureau of Water
Compliance Assurance Section #19
1021 North Grand Avenue East
P.O. Box 19276
Springfield, Illinois 62794-9274

Subject:

Temperature & Environmental Condition Report

Provisional Variance (IEPA 12-23) NPDES Permit No. IL0002224 Dresden Nuclear Generation Station

PMLTR 12-0055

Dear Mr. Callaway,

On July 18, 2012, Dresden Nuclear Generation Station was issued the above referenced Provisional Variance for the thermal limits indicated in Special Condition 3C of the NPDES Permit IL0002224. As per Conditions C & D of this provisional variance, Dresden Station is to provide a Temperature and Environmental Condition Report within (7) seven days of the PV expiration date of August 1, 2012. This letter contains the temperature and environmental conditions for the period of July 18, 2012 through August 5, 2012 (four days after PV expiration).

Temperature Condition Summary

Discharge Water:

As recorded on the attached Thermal Data, at no time did the Dresden Station discharge ever go above 93°F, which is 2 degrees below the 95°F maximum discharge limit as stipulated in the Provisional Variance. On July 18, 2012, Dresden Station began this provisional period with 15.9 regular excursion hours remaining in the 259.2 hour permit allotment (as per Condition 3(c) of NPDES Permit IL 0002224). Dresden exhausted the last of its regular excursion hours on July 19, 2012 and started operating under Provisional Variance IEPA12-23 with a discharge temperature of 91.13°F.

After July 25, 2012, Dresden was able to maintain discharge temperatures below 90°F throughout the remainder of the provisional variance period. The average temperature of the discharge for the entire period of this provincial variance was 88.9°F with a maximum of 92.4°F on July 18, 2012 @ 15:30.

Receiving Water:

As documented on the attached Thermal Data, Dresden Station receiving waters were elevated during the beginning of the variance period with a maximum of 90.8 on July 18, 2012. The Dresden Station intake temperature was used as the upstream river temperature during the analysis. The Dresden intake temperatures are representative of the Kankakee River upstream of the Dresden Station discharge.

Environmental Condition Summary

As listed on the attached Environmental Observation Logs, Dresden Station personnel performed visual inspections of discharge areas at least four times per day. No mortalities of fish or aquatic life observed throughout the entire provisional variance period nor were there any reports of any stress to fish or aquatic life.

As always, Dresden Station continues to manage its equipment to minimize the discharge temperature during the entire variance period. Should you require any further information or have any questions, please contact Ronald Novy of my staff at 815-416-3211.

Sincerely,

Shane Marik

Dresden Station Plant Manager

Attachments: (1) Thermal Data

(2) Environmental Observation Logs

CC: Debbie Bruce, Division Chief, Illinois DNR

1 Natural Resources Way, Springfield, IL 62702,

J. Petro

D. Leggett

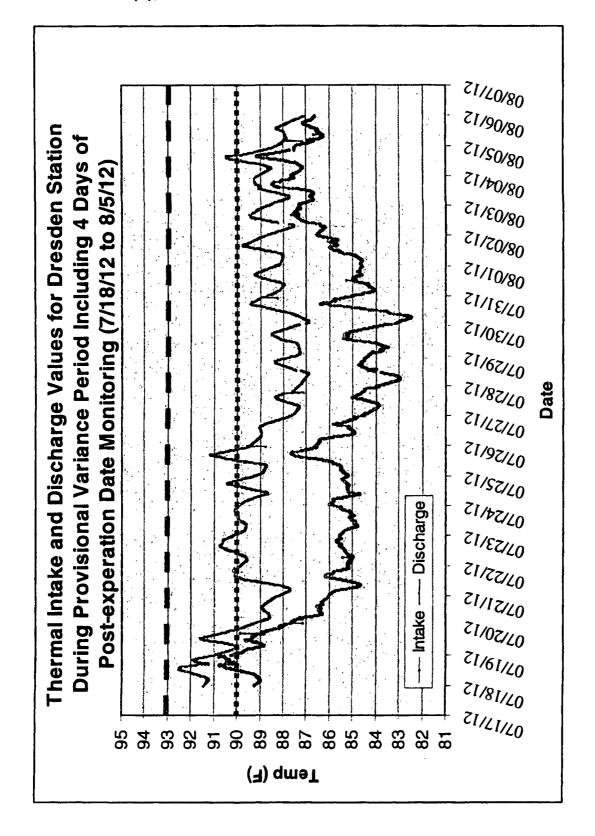
J. Gould

M. Davis

File

RM-AA-101-1009 Revision 2 Page 6 of 7

Attachment 2 Special Handling Target (SAMPLE)


SPECIAL HANDLING TARGET

BEST AVAILABLE COPY	(Next	pages)	
CHART/PHOTO(S)/TRACES REMOVED	(Next	pages)	
OVERSIZED PAGE/DRAWINGREMOVED	(Next	pages)	
Record page is larger than 11 x 17 inches.			
<u>OTHER</u>	(Next	pages)	
EXPLANATION:			
To Be Completed By P	Preparer:		
Document Number: NPDES			
List of pages, documents or drawings removed:			
List of pages, documents or drawings removed: AHAChment 1, Thermal Data 8/5/12) graph)		
List of pages, documents or drawings removed: AHAChment 1, Mermal Data 8/5/12) graph)		
AHachment 1, Mermal Data 815112) graph)		

** SEE SITE RECORDS MANAGEMENT FOR HARDCOPY LOCATION **

D204818

Attachment (1), Thermal Data

Attachment (2), Environmental Observation Logs

7/18/2012	09:00 - Effluent temperatures, based on the average of computer points E355 and E356, are 91.4 deg F. Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life.
	09:40 - HVO (Bernardi) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	12:40 - Effluent temperatures, based on the average of computer points E355 and E356, are 92.3 deg F. Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life.
	13:30 - HVO (Bernardi) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
7/19/2012	08:15 Computer points E355/E356 values are 88.6 deg F and 90.4 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam
	1630 - Effluent temperatures, based on the average of computer points E355 and E356, are 91.6 deg F. Dresden Island lock master (Walsh) reports no signs of adverse effects to local marine life.
	1740 - HVO (Komperda) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.
	2015 - Effluent temperatures, based on the average of computer points E355 and E356, are 90.3 deg F. Dresden Island lock master (Walsh) reports no signs of adverse effects to local marine life.
7/20/2012	08:25 Computer points E355/E356 values are 88.4 deg F and 88.6 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.
	12:40 - Effluent temperatures, based on the average of computer points E355 and E356, are 88.7 deg F. Dresden Island lock master (Larry Hibler) reports no signs of adverse effects to local marine life.
	16:20 Computer points E355/E356 values are 89.2 deg F and 89.1 deg F respectively. These values are recorded as part of provisional variances IEPA 12-23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.
	21:20 Computer points E355/E356 values are 88.4 deg F and 88.6 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.

7/21/2012

07:55 Computer points E355/E356 values are 87.7 deg F and 87.9 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.

14:10 Computer points E355/E356 values are 89.9 deg F and 89.9 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam. [Newton, Michael P - U-3 Aux NSO - Operations Log - Day Shift - 07/21/2012]

17:13 Computer points E355/E356 values are 90.4 deg F and 90.4 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam. [Newton, Michael P - U-3 Aux NSO - Operations Log - Day Shift - 07/21/2012]

19:25 - HVO (Manietta) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.

7/22/2012

10:00 HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.80 deg F and 89.95 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life. @

12:50 HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.

13:20 - Computer points E355/E356 values are 90.4 deg F and 90.5 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life. @

16:10 HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life

20:25 HVO (Mainieta) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life 20:45 - Computer points E355/E356 values are 90.4 deg F and 90.6 deg F respectively. Contacted Dresden Lock and Dam Master (Scott Coin) and he confirmed that there were no mortalities to fish or other aquatic life. This information is recorded as part of provisional variance IEPA 12-23.

7/23/2012

10:00 HVO (Styka) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.4 deg F and 89.4 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

14:00 HVO (Styka) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.9 deg F and 90.1 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

18:20 - HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.

20:31 Computer points E355/E356 values are 90.1 deg F and 90.1 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.

7/24/2012

10:00 HVO (Piekutowski) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.4 deg F and 88.7 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

13:38 HVO (Piekutowski) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.4 deg F and 89.6 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

1750 - HVO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. [

19:56 Computer points E355/E356 values are 90.2 deg F and 90.4 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam. [

7/25/2012

9:00 HVO (Piekutowski) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.6 deg F and 88.9 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

13:00 HVO (Piekutowski) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 90.7 deg F and 90.5 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

17:31 Computer points E355/E356 values are 90.9 deg F and 90.7 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.

19:55 Computer points E355/E356 values are 90.1 deg F and 90.2 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.

7/26/2012

09:30 HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.7ŰF and 89.0ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

13:10 HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.9°F and 89.0°F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

18:09 Computer points E355/E356 values are 88.4 deg F and 88.6 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.]

19:57 Computer points E355/E356 values are 88.4 deg F and 88.6 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.

7/27/2012

09:40, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 87.5ŰF and 87.5ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

13:00, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.3ŰF and 88.3ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

18:01 Computer points E355/E356 values are 88.2 deg F and 88.0 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam

20:20 Computer points E355/E356 values are 87.4 deg F and 87.7 deg F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no fish kills occurring at the Lock and Dam.

7/28/2012

10:40, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 87.1ŰF and 87.3ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

13:55, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 87.7ŰF and 87.5ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

16:35, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or

20:25, HVO(Kusava) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.2°F and 88.5°F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

7/29/2012

10:00, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 87.0°F and 87.3°F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

13:10, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.4°F and 88.4°F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

17:00, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life.

21:06, HVO(Kuzava) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.4ŰF and 88.6ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to

7/30/2012

09:35, HVO(Sieling) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 87.1ŰF and 87.3ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

12:52, HVO(Sieling) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.8ŰF and 88.9ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

16:00, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.5ŰF and 89.5ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

19:45, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.3ŰF and 89.5ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

7/31/2012

08:35, NLO (Osburn) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 87.6ŰF and 87.8ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

12:00, HVO(B. Kim) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.6ŰF and 88.6ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

17:10, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.5ŰF and 89.7ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

19:35, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.0ŰF and 89.0ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/1/2012

09:29, HVO (B. Kim) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 87.6ŰF and 87.9ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

13:00, HVO(B. Kim) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89°F and 89°F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

16:33, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.8ŰF and 89.8ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

19:10, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.7ŰF and 89.7ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/2/2012

10:10, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.1ŰF and 88.9ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

14:05, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.7ŰF and 89.7ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

17:10, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.6ŰF and 89.6ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

19:32, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.1ŰF and 89.0ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/3/2012

10:15, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.3ŰF and 88.5ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

1230, NLO (Reader) reports inspection of the area where Dresden Station

discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.4°F and 89.6°F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

16:55 HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.3ŰF and 89.4ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master who confirmed that there were no mortalities to fish or other aquatic life.

19:30 HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 89.0°F and 89.2°F respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master who confirmed that there were no mortalities to fish or other aquatic life.

8/4/2012

09:54, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.8ŰF and 88.9ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

12:44, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 90.1ŰF and 90.1ŰF respectively. These values are recorded as part of provisional variances IEPA 12-22 & 23 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

15:05, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River show no mortalities to fish or other aquatic life.

20:50, NLO (Kim) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.8ŰF and 89.1ŰF respectively. These values are recorded as part of provisional variances IEPA 12-23 & 25 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/5/2012

09:44, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 87.2°F and 87.6°F respectively. These values are recorded as part of provisional variances IEPA 12-23 and 12-25 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

12:24, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 88.1°F and 88.1°F respectively. These values are recorded as part of provisional variances IEPA 12-23 and 12-25 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

15:30, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River show no mortalities to fish or other aquatic life.

21:00, HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Computer points E355/E356 values are 87.1ŰF and 87.4ŰF respectively. These values are recorded as part of provisional variances IEPA 12-23 and 12-25 granted to Dresden Station. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

EN-AA-105 Revision 4 Page 14 of 14

Attachment 2 Example Verification Completion Form Page 1 of 1

Verification Documentation

Correspondence/Letter r	number: <u>ໃນດະ</u>	-78 12-005S	Origination Date:	2/8/12
Agency/External Stakeho			Submittal Due Date: _	8/8/12
Recipient of Correspond	ence: R	5 (name a	and title if Anown)	
Purpose of Submittal:	PV 12	-53 Open	vatoral Proport	
Originating Office:		☐ Kennett Se	·	esden
Preparer: Rovede Peer Reviewer: Lour	(print) (print) (print)	J	(sign) (sign)	(specify) (date) (date) (date)
Certified Mail Return Red	ceipt Request	ed: □ Yes	□ No	
	Applicable	Date Review Needed	Signature of Reviewer	Date of Review
Site Departments				
Chemistry	No.	Dele	Suplan	8-8-12
Operations			4	
Engineering				
Regulatory Assurance				
Other:(specify)				
Corporate		· · · · · · · · · · · · · · · · · · ·		
SME/FAM				
Site Management				
Plant Manager	\\	8/8/12	☐ Report Signed and App	proved
Site Vice President			Troport digited and App	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Attach additional page for comments.

Exelon Generation LLC's Responses to the Board's Questions

ATTACHMENT 11

Exelon Generation Company, LLC Dresden Nuclear Power Station 6500 North Dresden Road Morris, IL 60450-9765

www.exeloncorp.com

August 22, 2012

Mr. Roger Callaway (CAS-19)
Wastewater Compliance Unit Manager
Illinois Environmental Protection Agency
Bureau of Water
Compliance Assurance Section #19
1021 North Grand Avenue East
P.O. Box 19276
Springfield, Illinois 62794-9274

Subject:

Temperature & Environmental Condition Report

Provisional Variance (IEPA 12-25) NPDES Permit No. IL0002224

Dresden Nuclear Generation Station

PMLTR 12-0058

Dear Mr. Callaway,

On August 3, 2012, Dresden Nuclear Generation Station was issued the above referenced Provisional Variance for the thermal limits indicated in Special Condition 3C of the NPDES Permit IL0002224. As per Conditions D & E of this provisional variance, Dresden Station is to provide a Temperature and Environmental Condition Report within (7) seven days of the PV expiration date of August 16, 2012. This letter contains the temperature and environmental conditions for the period of August 3, 2012 through August 20, 2012 (four days after PV expiration).

Temperature Condition Summary

Discharge Water:

As recorded on the attached Thermal Data, Dresden Station utilized this variance on August 4, 2012 for a period of 4.25 hours (from 12:30 to 16:45). This would correspond to one (1) day of variance relief as per Condition A of the above referenced provisional variance. After August 4, 2012, Dresden was able to maintain discharge temperatures below 90°F throughout the remainder of the provisional variance period. The average temperature of the discharge for the entire period of this provisional variance was 86.1°F with a maximum of 90.5°F on August 4, 2012 @ 14:00.

Receiving Water:

As documented on the attached Thermal Data, Dresden Station receiving waters were elevated during the beginning of the variance period with a maximum of 89.2 on August 4, 2012. The Dresden Station intake temperature was used as the upstream river temperature during the analysis. The Dresden intake temperatures are representative of the Kankakee River upstream of the Dresden Station discharge.

Environmental Condition Summary

As listed on the attached Environmental Observation Logs, Dresden Station personnel performed visual inspections of discharge areas at least four times per day. No mortalities of fish or aquatic life observed throughout the entire provisional variance period nor were there any reports of any stress to fish or aquatic life.

In addition, river and weather conditions were also monitored twice per day for the entire variance period as per Condition B of IEPA 12-25. No abnormal conditions were noted during this variance period.

As always, Dresden Station continued to manage its equipment to minimize the discharge temperatures throughout the entire variance period. Should you require any further information or have any questions, please contact Ronald Novy of my staff at 815-416-3211.

Sincerely,

Shane Marik

Dresden Station Plant Manager

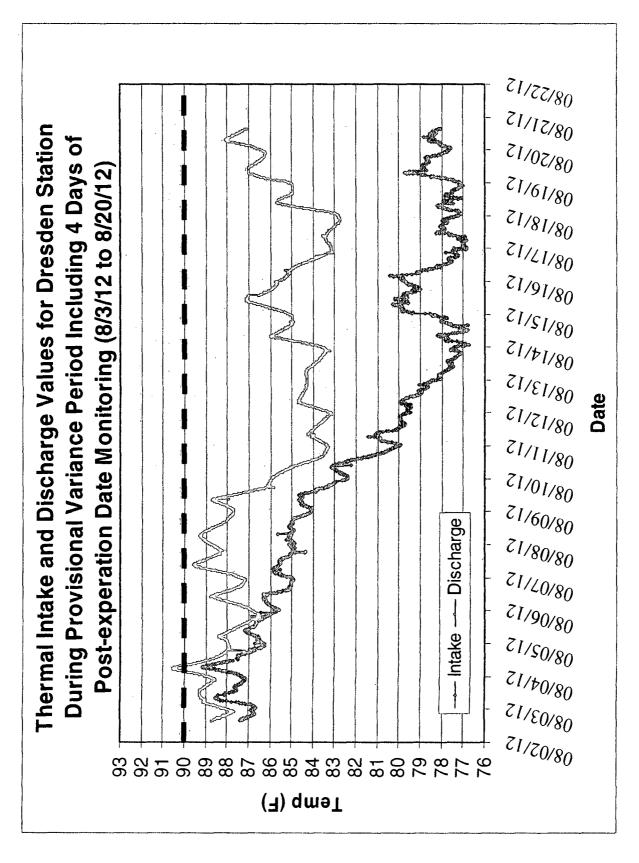
Attachments: (1) Thermal Data

(2) Environmental Observation Logs

CC: Debbie Bruce, Division Chief, Illinois DNR

1 Natural Resources Way, Springfield, IL 62702,

J. Petro


D. Leggett

J. Gould

M. Davis

File

Attachment (1), Thermal Data

Attachment (2), Environmental Observation Logs

8/3/2012

At 10:15, NLO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 12:30, NLO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 16:55 HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master who confirmed that there were no mortalities to fish or other aquatic life.

At 19:30 HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master who confirmed that there were no mortalities to fish or other aquatic life.

8/4/2012 At 09:00

Provisional Variance (IEPA - 12-25) from the Illinois EPA begins when discharge canal temperatures exceed 90 degrees. <u>The provisional variance has not been entered at this time however it is anticipated that it will be entered today.</u>

Air temperature = 81 degrees
Intake canal temperature = 87.2 degrees
Discharge canal temperature E355 = 88.6 degrees
E356 = 88.9 degrees

Kankakee River flow = 603 cfs
Des Plaines River flow = 1500 cfs
Weather conditions = calm
PJM alerts issued = none

NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

Start PV12-25→

At 12:30

Discharge canal average temperature has exceeded 90 degrees. <u>Begin provisional variance IEPA 12-25</u>. Monitoring requirements per the variance are now in effect. Attempts to notify Illinois EPA (Roger Callaway) by telephone at 217-782-9720 were unsuccessful. Message left via Roger Callaway's office voicemail at 217-782-9852

At 12:44

NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Kankakee River flow = 619 cfs Des Plaines River flow = 7150 cfs Weather conditions = Rain storms PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 20:50, NLO (Kim) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life

8/5/2012 At 09:00

Air temperature = 73.3 degrees
Intake canal temperature = 86.3 degrees
Discharge canal temperature E355 = 87.4 degrees
E356 = 87.7 degrees

Kankakee River flow = 587 cfs
Des Plaines River flow = 1840 cfs
Weather conditions = Fair
PJM alerts issued = none

NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 12:24, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 15:30, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Air temperature = 81.8 degrees
Intake canal temperature = 86.9 degrees
Discharge canal temperature E355 = 88.0 degrees
E356 = 88.2 degrees

Kankakee River flow = 555 cfs
Des Plaines River flow = 2450 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 21:00 HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Mastér, and he confirmed that there were no mortalities to fish or other aquatic life.

8/6/2012 At 09:00

Kankakee River flow = 619 cfs Des Plaines River flow = 579 cfs Weather conditions = Fair PJM alerts issued = none

NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 12:00, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Intake canal temperature = 87.0 degrees
Discharge canal temperature E355 = 88.5 degrees
E356 = 88.7 degrees

Kankakee River flow = 635 cfs
Des Plaines River flow = 408 cfs
Air temperature = 87.0 degrees
Weather conditions = Fair
PJM alerts issued = none

NLO (Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 20:20, NLO (Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/7/2012 At 09:00

Kankakee River flow = 669 cfs
Des Plaines River flow = 2530 cfs
Weather conditions = Fair
PJM alerts issued = none

NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 12:20, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 16:00, NLO (Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00 hrs.

Air temperature = 87.0 degrees Intake canal temperature = 87.0 degrees Discharge canal temperature E355 = 89.6 degrees E356 = 90.2 degrees

Kankakee River flow = 686 cfs
Des Plaines River flow = 966 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 19:30, NLO (Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/8/2012 At 09:00

Air temperature = 78.5 degrees Intake canal temperature = 85.6 degrees Discharge canal temperature E355 = 88.3 degrees

E356 = 88.6 degrees

Kankakee River flow = 703 cfs
Des Plaines River flow = 1750 cfs
Weather conditions = Fair
PJM alerts issued = none

NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 12:55, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Air temperature = 71.0 degrees Intake canal temperature = 85.0 degrees Discharge canal temperature E355 = 89.2 degrees E356 = 89.5 degrees

Kankakee River flow = 756 cfs Des Plaines River flow = 3150 cfs Weather conditions = Cloudy PJM alerts issued = none

NLO (Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 19:45, NLO (Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/9/2012 At 09:00

Kankakee River flow = 775 cfs
Des Plaines River flow = 1430 cfs
Weather conditions = Fair
PJM alerts issued = none

NLO (Bay) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 12:03, NLO (Bay) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Air temperature = 87.0 degrees
Intake canal temperature = 87.0 degrees
Discharge canal temperature E355 = 88.7 degrees
E356 = 88.9 degrees

Kankakee River flow = 756 cfs Des Plaines River flow = 3740 cfs

Weather conditions = Fair PJM alerts issued = none

NLO (Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 20:30, NLO (Hall) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/10/2012 At 09:00

Kankakee River flow = 721 cfs
Des Plaines River flow = 3470 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 12:00

NLO (Bay) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Air temperature = 74 degrees
Intake canal temperature = 86.3 degrees
Discharge canal temperature E355 = 85.0 degrees
E356 = 85.3 degrees

Kankakee River flow = 703 cfs
Des Plaines River flow = 2030 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 18:00, NLO (Martin) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 19:30, NLO (Martin) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/11/2012 At 09:00

Air temperature = 59.7 degrees Intake canal temperature = 80.5 degrees Discharge canal temperature E355 = 82.8 degrees E356 = 83.3 degrees

Kankakee River flow = 686 cfs
Des Plaines River flow = 1330 cfs
Weather conditions = Fair
PJM alerts issued = none

NLO, (Bay) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 12:30, NLO (Bay) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 15:30, NLO (Bay) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:16

Air temperature = 79.3 degrees Intake canal temperature = 81.3 degrees Discharge canal temperature E355 = 83.7 degrees E356 = 84.0 degrees

Kankakee River flow = 686 cfs
Des Plaines River flow = 3640 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 20:15, NLO (Reader) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/12/2012 At 09:03

Air temperature = 64.9 degrees Intake canal temperature = 80.1 degrees Discharge canal temperature E355 = 82.9 degrees E356 = 83.3 degrees

Kankakee River flow = 703 cfs
Des Plaines River flow = 1500 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 12:35

NLO (Bay) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:10

Intake canal temperature = 80.4 degrees
Discharge canal temperature E355 = 84.7 degrees
E356 = 84.8 degrees

Kankakee River flow = 703 cfs
Des Plaines River flow = 1690 cfs
Air temperature = 77.1 degrees
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 21:44

NLO (Nagel) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/13/2012 At 09:00

Air temperature = 63.0 degrees
Intake canal temperature = 78.5 degrees
Discharge canal temperature E355 = 84.0 degrees
E356 = 84.5 degrees

Kankakee River flow = 739 cfs
Des Plaines River flow = 1270 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 12:24

NLO (Bay) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 13:18

NLO (Bay) reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 16:47

Air temperature = 62.4 degrees
Intake canal temperature = 78.2 degrees
Discharge canal temperature E355 = 84.0 degrees
E356 = 84.4 degrees

Kankakee River flow = 721 cfs
Des Plaines River flow = 1550 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

8/14/2012 At 09:00

Air temperature = 62 degrees Intake canal temperature = 78 degrees Discharge canal temperature E355 = 83 degrees E356 = 83 degrees

Kankakee River flow = 793 cfs
Des Plaines River flow = 1560 cfs
Weather conditions = Fair & Overcast
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal @ 09:22 and calling the Dresden Island lock master.

At 12:53

NLO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 16:57

Air temperature = 81.0 degrees Intake canal temperature = 78.5 degrees Discharge canal temperature E355 = 85.9 degrees E356 = 86.1 degrees

Kankakee River flow = 775 cfs
Des Plaines River flow = 1730 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock.

8/15/2012 At 09:00

Air temperature = 69.7 degrees Intake canal temperature E352 = 79.2 degrees Discharge canal temperature E355 = 84.6 degrees E356 = 85.0 degrees

Kankakee River flow = 756 cfs
Des Plaines River flow = 4030 cfs
Weather conditions = Fair & Overcast
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 13:22

NLO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Air temperature = 86.7 degrees Intake canal temperature = 80.7 degrees Discharge canal temperature E355 = 87.2 degrees E356 = 87.4 degrees

Kankakee River flow = 775 cfs
Des Plaines River flow = 806 cfs
Weather conditions = Fair
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 19:31

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/16/2012 At 09:15

Air temperature = 66.9 degrees Intake canal temperature = 80.5 degrees Discharge canal temperature E355 = 85.1 degrees E356 = 85.5 degrees

Kankakee River flow = 1490 cfs
Des Plaines River flow = 3330 cfs
Weather conditions = Rain
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 12:30

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Air temperature = 70.3 degrees Intake canal temperature = 79.2 degrees Discharge canal temperature E355 = 85.2 degrees E356 =85.8 degrees

Kankakee River flow = 812 cfs
Des Plaines River flow = 607 cfs
Weather conditions= Overcast
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 19:00

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/17/2012 At 09:00

Air temperature = 66.9 degrees
Intake canal temperature = 77.1 degrees
Discharge canal temperature E355 = 82.6 degrees
E356 = 83.1 degrees

Kankakee River flow = 1410 cfs
Des Plaines River flow = 3940 cfs
Weather conditions = Clear, 8-10mph wind
PJM alerts issued = none

Op's personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal @1000 and calling the Dresden Island lock master.

At 13:20

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Air temperature = 74.4 degrees Intake canal temperature = 77.9 degrees

Discharge canal temperature E355 = 83.7 degrees E356 = 83.8 degrees

Kankakee River flow = 869 cfs
Des Plaines River flow = 2540 cfs
Weather conditions = Clear
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 19:00

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/18/2012 At 09:03

Air temperature = 65.1 degrees Intake canal temperature = 77.8 degrees Discharge canal temperature E355 = 82.6 degrees

Scharge carial temperature E353 = 62.0 degrees

E356 = 82.8 degrees

Kankakee River flow = 908 cfs
Des Plaines River flow = 1490 cfs
Weather conditions = Clear, 6-10mph wind
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal @ 0910 and calling the Dresden Island lock master.

At 13:00

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Air temperature = 76.6 degrees
Intake canal temperature = 78.2 degrees
Discharge canal temperature E355 = 85.7 degrees
E356 = 85.9 degrees

Kankakee River flow = 928 cfs
Des Plaines River flow = 2980 cfs
Weather conditions = Clear and calm
PJM alerts issued = none

At 20:00

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

8/19/2012 At 09:00

Air temperature = 76.6 degrees
Intake canal temperature = 77.4 degrees
Discharge canal temperature E355 = 84.5 degrees
E356 = 85.0 degrees

Kankakee River flow = 968 cfs
Des Plaines River flow = 934 cfs
Weather conditions = Calm
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal @ 0910 and calling the Dresden Island lock master.

At 13:00

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:00

Air temperature = 76.6 degrees Intake canal temperature = 79.6 degrees Discharge canal temperature E355 = 87.3 degrees E356 = 87.6 degrees

Kankakee River flow = 1070 cfs
Des Plaines River flow = 1960 cfs
Weather conditions = Clear and NW Wind at 5 mph
PJM alerts issued = none

At 19:25

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master at 19:30 and he confirmed that there were no mortalities to fish or other aquatic life.

8/20/2012 At 09:06

Air temperature = 65.1 degrees
Intake canal temperature = 78 degrees
Discharge canal temperature E355 = 85.6 degrees
E356 = 86.4 degrees

Kankakee River flow = 968 cfs Des Plaines River flow = 995 cfs Weather conditions = Calm PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal @ 09:00 and calling the Dresden Island lock master.

At 13:58

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

At 17:15

Air temperature = 72 degrees
Intake canal temperature = 79 degrees
Discharge canal temperature E355 = 87.9 degrees
E356 = 88.2 degrees

Kankakee River flow = 1030 cfs
Des Plaines River flow = 2600 cfs
Weather conditions = Overcast with NE wind 10 mph
PJM alerts issued = none

Ops personnel verified no signs of adverse effects to local marine life by checking the Illinois River in the area of the discharge canal and calling the Dresden Island lock master.

At 17:53

HVO reports inspection of the area where Dresden Station discharge meets the Illinois River shows no mortalities to fish or other aquatic life. Contacted Dresden Lock and Dam Master, and he confirmed that there were no mortalities to fish or other aquatic life.

EN-AA-105 Revision 4 Page 14 of 14

Attachment 2 Example Verification Completion Form Page 1 of 1

Verification Documentation Origination Date: Correspondence/Letter number: PMLTR 12-0058 Agency/External Stakeholder: Submittal Due Date: 8/22 Recipient of Correspondence: 2 (name and title if known) Purpose of Submittal: End Report For Drowsond Vormer □ Kennett Square M Site Originating Office:

Cantera (specify) (pript) (date Certified Mail Return Receipt Requested: □ Yes

Approvals (check box if applicable)

	Applicable	Date Review Needed	Signature of Reviewer	Date of Review
Site Departments				
Chemistry	>	8/20/12	Downs Wagell	2.21.22
Operations				
Engineering				
Regulatory Assurance				
Other:(specify)				
Corporate				
SME/FAM				
Site Management				
Plant Manager	723	8/22/12	☐ Report Signed and App	royed
Site Vice President			La Report Signed and App	

Attach additional page for comments.

Exelon Generation LLC's Responses to the Board's Questions

ATTACHMENT 12

EA Report CWE11

DRESDEN 1981 ENVIRONMENTAL PROGRAM

<u>TEXT</u>

Prepared for Commonwealth Edison Company One First National Plaza Chicago, Illinois 60690

Prepared by

Ecological Analysts, Inc. 1500 Frontage Road Northbrook, Illinois 60062

Approved by:

D. E. Patulski

Project Manager

L.)D. Averhart Program Manager

January 1982

CONTENTS

			·	Page
	PREF	ACE		vii
	LIST	OF FIG	URES	ix
	LIST	OF TAB	LES	хi
	EXEC	UTIVE S	UMMARY	xxv
1.0	INTR	ODUCTIO	N .	1-1.
2.0	WATE	R QUALI	TY AND PLANKTON STUDY	2-1
			Area Description Quality	2-1 2-6
		2.2.2	Introduction Field Procedures Results and Discussion References	2-6 2-6 2-7 2-7
	2.3	Phytop	lankton	2-8
			Introduction Field and Analytical Procedures	2-8 2-8
			2.3.2.1 Field Procedures 2.3.2.2 Laboratory Procedures 2.3.2.3 Data Handling and Analysis	2-8 2-8 2-9
		2.3.3	Results and Discussion	2-10
			2.3.3.1 Community Composition 2.3.3.2 Changes Through the Cooling Water System	2-10 2-11
			Summary and Conclusions References	2-12 2-13
	2.4	Zoopla	enkton	2-55
			Introduction Field and Analytical Procedures	2-55 2-55
			2.4.2.1 Field Procedures 2.4.2.2 Laboratory Procedures 2.4.2.3 Data Handling and Analysis	2-56 2- 56 2-56
		2.4.3	Results and Discussion	2-56
			2.4.3.1 Community Composition 2.4.3.2 Changes Through the Cooling Water System	2-56 2-57

CONTENTS (CONT.)

			•	<u>Page</u>
			Summary and Conclusions References	2-58 2-59
3.0	RIVE	R SYSTE	M STUDIES	3-1
	3.1 3.2		Area Description nvertebrates	3-1 3-4
			Introduction Field and Analytical Procedures	3-4 3-4
			3.2.2.1 Field Procedures 3.2.2.2 Laboratory Procedures	3-4 3-4
		3.2.3	Results and Discussion	3-5
			3.2.3.1 Sediment Characterization 3.2.3.2 Community Composition 3.2.3.3 Spatial and Temporal Distribution 3.2.3.4 Changes in Community Structure	3~5 3~5 3-6 3-7
			Summary and Conclusions References	3-8 3-8
	3,3	Fish M	ioni toring	3-28
			. Introduction Field and Analytical Procedures	3-28 3-28
			3.3.2.1 Field Procedures 3.3.2.2 Laboratory Procedures 3.3.2.3 Data Handling and Analysis 3.3.2.4 Physicochemical Measurements 3.3.2.5 Station Operating Status, Cooling Water and River Flow	3-28 3-30 3-30 3-31 3-31
		3.3.3	Results and Discussion - Dresden Pool	3-32
			3.3.3.1 Review of Catch Results 3.3.3.2 Physicochemical Measurements 3.3.3.3 Spatial and Temporal Distribution of Fi 3.3.3.4 Coefficient of Condition 3.3.3.5 Incidence of Disease, Parasitism and Abnormalities of Fish 3.3.3.6 Changes in the Fish Community in the River System	3-32 3-33 3-35 3-35 3-36

CONTENTS (CONT.)

			Page
	3.3.4	Results and Discussion - Below Dresden Island Lock and Dam	3-39
		3.3.4.1 Review of Catch Results 3.3.4.2 Physicochemical Measurements 3.3.4.3 Spatial and Temporal Distribution of Fish 3.3.4.4 Coefficient of Condition 3.3.4.5 Incidence of Disease, Parasitism and Abnormalities of Fish 3.3.4.6 Changes in the Fish Community in the River System	3-49 3-40 3-41 3-42 3-43
	3.3.5	Habitat and Temperature Differences Above and	3-43
		Below Dresden Island Lock and Dam Summary and Conclusions References	3-44 3-46
4.0 IMPI	NGEMENT	STUDY	4-1
4.2	Introdu	Area Description uction and Analytical Procedures	4-1 4-3 4-4
	4.3.2 4.3.3	Field Procedures Laboratory Procedures Data Handling and Analysis Physicochemical Measurements	4-4 4-4 4-5
4.4	Results	s and Discussion	4-6
	4.4.2 4.4.3 4.4.4 4.4.5	Station Operating Status and Cooling Water Usage Composition of Impinged Fish Physicochemical Measurements Temporal Abundance of Fish Length Distribution of Selected Species Incidence of Disease, Parasitism and Abnormalities of Fish	4-6 4-6 4-7 4-7 4-8 4-9
	4.4.7	Estimation of Impingement Losses	4-10
4.5 4.6	Summary Refere	y and Conclusions nces	4~11 4~12
APPENDIX	A: RAW	PHYTOPLANKTON DATA	A-1
APPENDIX	B: RAW	ZOOPLANKTON DATA	B-1.
APPENDIX	C: RAW	FISH DATA - DRESDEN POOL	C-1.
APPENDIX :	D: RAW	FISH DATA - BELOW DRESDEN ISLAND LOCK AND DAM	0-1

CONTENTS (CONT.)

		Page
APPENDIX E:	IMPINGEMENT DATA	E-1
APPENDIX F:	CALIBRATION DATA	F-1
APPENDIX 6:	FIELD OBSERVATION DATA	G-1

PREFACE

This report of the 1981 Dresden Environmental Program represents the compilation of three distinct studies conducted at and within the environs of the Dresden Nuclear Station: Water Quality and Plankton Studies; River System Studies; and an Impingement Study. Personnel of Ecological Analysts, Inc. (EAI) conducted all aspects of the studies with the exception of analysis and reporting of water quality data which was performed by Commonwealth Edison Company's (CECo) Operational Analysis Department (OAD). EAI personnel were responsible for the collection of water samples and field chemistry measurements only. Water quality data are not included in this report.

Mr. Daniel Patulski, Project Manager, coordinated and directed the program and compiled the report. Mr. Lloyd Everhart, Program Manager, provided technical and editorial review of the final report.

The following EAI personnel were the principal investigators and authored their respective sections of the report:

Phytoplankton and Zooplankton Ms. D. Dvorak, Aquatic Sciences Macroinvertebrates Mr. D. Geers, Aquatic Sciences Fisheries (River System and Impingement) Mr. D. Patulski, Aquatic Sciences

Other staff members who participated in the program or in preparation of the report include Ms. K. Hattala, Mr. R. Lewis, Mr. K. Stimpson, Mr. F. Piron, Mr. T. Hamilton and Mr. J. Protano, field surveys and laboratory analysis; Mr. R. Bockelman and Mr. E. Bernabe, algal analyses; Mr. J. Weitzel, sediment analyses; Ms. B. Ruble, data processing; and Ms. Anne Potter, word processing. The assistance and cooperation of CECo personnel, particularly Ms. Sharon Brinker, program coordinator for CECo, was greatly appreciated. The cooperation of OAD personnel, especially J. Urjevec and P. Noska, in the preparation and delivery of chemistry sample containers was also appreciated.

.

LIST OF FIGURES

<u>Number</u>	<u>Title</u>	<u>Page</u>
2.1-1	Schematic of water chemistry and plankton sampling locations, Dresden Station Cooling System	2-2
2.3.1	Mean density of total live phytoplankton collected from seven locations near the Dresden Station, June - September 1981	2-15
2.3-2	Mean biovolume of total live phytoplankton collected from three locations near the Dresden Station, June - September 1981	2-16
2.3-3	Mean chlorophyll a and pheophytin concentrations collected from seven locations near Dresden Station, June - September 1981	2-17
2.4-1	Mean density of total zooplankton collected from seven locations near Dresden Station, June - September 1981	2-60
2.4-2	Mean percentage occurrence of major zooplankton groups collected from seven locations near Dresden Station, June - September 1981	2-61
3.1-1	Sampling locations in the Kankakee, Des Plaines and Illinois Rivers near the Dresden Station	3~2
4.1-1	Schematic of the intake and discharge system at the Dresden Station	4-2

LIST OF TABLES

Number	<u>Title</u>	<u>Page</u>
2.1-1	Sampling Tocations for water chemistry, phytoplankton, and zooplankton, Dresden Station, June - September 1981.	2-3
2.1-2	Approximate cooling water transit times for Locations C, D, E, F and G. $$	2-4
2.1-3	Sampling schedule by location and time interval Dresden water quality and plankton studies.	2-5
2.3-1	Mean density and range of total live phytoplankton collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-18
2.3-2	Mean density and range of total live Bacillariophyta collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-1.9
2.3-3	Mean density and range of live <u>Cyclotella meneghiniana</u> collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-20
2.3-4	Mean density and range of live <u>Melosira distans</u> collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-21
2.3-5	Mean density and range of live <u>Melosira granulata</u> collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-22
2.3-6	Mean density and range of live <u>Nitzschia acicularis</u> collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-23
2.3-7	Mean density and range of live <u>Nitzschia palea</u> collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-24
2.3-8	Mean density and range of live <u>Skeletonema potamos</u> collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-25
2.3-9	Mean density and range of live <u>Stephanodiscus invisitatus</u> collected from seven locations in the Dresden <u>Station</u> cooling system, June - September 1981.	2-26
2.3-10	Mean density and range of total live Chlorophyta collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-27

Number	<u>Title</u>	<u>Pa ge</u>
2.3-11	Mean density and range of live <u>Ankistrodesmus falcatus</u> collected from seven locations in the Dresden Station cooling system, June - September 1981.	2~28
2.3-12	Mean density and range of live <u>Scenedesmus abundans</u> collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-29
2.3-13	Mean density and range of live <u>Scenedesmus denticulatus</u> collected from seven locations in the <u>Dresden Station</u> cooling system, June - September 1981.	2-30
2.3-14	Mean density and range of total live Cyanophyta collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-31
2.3-15	Mean density and range of total live Euglenophyta collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-32
2.3-16	Mean percent occurrence of major algal divisions collected in the Dresden Station cooling system, June - September 1981.	2-33
2.3-17	Summary of mean temperatures recorded in the Dresden Station cooling system, June - September 1981.	2-34
2.3-18	Chlorophyll a and pheophytin concentrations from samples collected at Locations A, B, C, D, E, F, and G in the Dresden Station cooling system, June 1981.	2-35
2.3- 19	Chlorophyll a and pheophytin concentrations from samples collected at Locations A, B, C, D, E, F, and G in the Dresden Station cooling system, July 1981.	2-36
2.3-20	Chlorophyll <u>a</u> and pheophytin concentrations from samples collected at Locations A, B, C, D, E, F, and G in the Dresden Station cooling system, August 1981.	2-37
2.3-21	Chlorophyll \underline{a} and pheophytin concentrations from samples collected at Locations A, B, C, D, E, F, and G in the Dresden Station cooling system, September 1981.	2-38
2.3-22	Biovolume of live phytoplankton collected at Locations A, B, and F in the Dresden Station cooling system, June 1981.	2-39
2.3-23	Biovolume of live phytoplankton collected at Locations A, B, and F in the Dresden Station cooling system, July 1981.	2-42

Number	<u>Title</u>	<u>Page</u>
2.3-24	Biovolume of live phytoplankton collected at Locations A, B, and F in the Dresden Station cooling system, August 1981.	2-46
2.3-25	Biovolume of live phytoplankton collected at Locations A, B, and F in the Dresden Station cooling system, September 1981.	2-50
2.4-1	Taxonomic list of zooplankton collected in the Des Plaines River, Kankakee River, and Dresden Station cooling system, June - September 1981.	2-62
2.4-2	Mean density and range of total zooplankton collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-64
2.4-3	Mean density and range of total Copepoda collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-65
2.4-4	Mean density and range of nauplif collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-66
2.4-5	Mean density and range of cyclopoid copepodites collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-67
2.4-6	Mean density and range of total Cladocera collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-68
2.4-7	Mean density and range of <u>Diaphanosoma</u> species collected from seven locations in the <u>Dresden Station</u> cooling system, June - September 1981.	2-69
2.4-8	Mean density and range of <u>Moina micrura</u> collected from seven locations in the Dresden Station cooling system, June - September 1981.	2- 70
2.4-9	Mean density and range of total Rotifera collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-71
2.4-10	Mean density and range of bdelloid Rotifera collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-72

Number	<u>Title</u>	Page
2.4-11	Mean density and range of <u>Brachionus</u> spp. collected from seven locations in the <u>Dresden Station</u> cooling system, June - September 1981.	2-73
2.4-12	Mean density and range of <u>Keratella</u> spp. collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-74
2.4-13	Mean density and range of <u>Synchaeta</u> spp. collected from seven locations in the Dresden Station cooling system, June - September 1981.	2-75
3.1-1	Description of sampling locations for macroinvertebrates and fish.	3-3
3.2-1	Summary of total organic analysis and particle size analysis of sediment samples collected from the Illinois River near the Dresden Power Station, 23 June 1981.	3-10
3.2-2	Summary of total organic analysis and particle size analysis of sediment samples collected from the Illinois River near the Dresden Power Station, 21 July 1981.	3-11
3.2-3	Summary of total organic analysis and particle size analysis of sediment samples collected from the Illinois River near the Dresden Power Station, 25 August 1981.	3-12
3.2-4	Summary of total organic analysis and particle size analysis of sediment samples collected from the Illinois River near the Dresden Power Station, 15 September 1981.	3-13
3.2.5	Taxonomic list of benthic macroinvertebrates encountered in the Illinois River hear the Dresden Station, June - September 1981.	3-14
3.2.6	Mean density and range for total benthos at three locations near the Dresden Station, June - September 1981.	3-15
3.2-7	Number per replicate, mean number per meter square and percent occurrence of benthic macroinvertebrates at three locations near the Dresden Station, 23 June 1981.	3-16
3,2-8	Number per replicate, mean number per meter square and percent occurrence of benthic macroinvertebrates at three locations near the Dresden Station, 21 July 1981.	3-17
3.2-9	Number per replicate, mean number per meter square and percent occurrence of benthic macroinvertebrates at three locations near the Dresden Station, 25 August 1981.	3-18

<u>Number</u>	<u> Title</u>	<u>Page</u>
3.2-10	Number per replicate, mean number per meter square and percent occurrence of benthic macroinvertebrates at three locations near the Dresden Station, 15 September 1981.	3-19
3.2-11	Mean density and range for unidentified immature Tubificidae without capilliform chaetae at three locations near the Dresden Station, June - September 1981.	3-20
3.2-12	Mean density and range for unidentified immature Tubificidae with capilliform chaetae at three locations near the Dresden Station, June - September 1981.	3 -2 1
3.2-13	Mean density and range for <u>Limnodrilus hoffmeisteri</u> at three locations near the Dresden Station, June - September 1981.	3-22
3.2-14	Mean density and range for <u>limnodrilus maumeensis</u> at three locations near the Dresden Station, June - September 1981.	3-23
3.2-15	Mean density and range for <u>limnodrilus cervix</u> at three locations near the Dresden Station, June - September 1981.	3-24
3.2-16	Mean density and range for <u>Aulodrilus pigueti</u> at three locations near the Dresden Station, June - September 1981.	3-25
3.2-17	Mean density and range for total Chironomidae at three locations near the Dresden Station, June - September 1981.	3-26
3.2-18	Mean density and range for <u>Corbicula fluminea</u> at three locations near the Dresden <u>Station</u> , June - September 1981.	3-27
3,3-1	Common and scientific names of fishes collected by all gear types in the Bresden Pool near the Dresden Station, 1981.	3-47
3.3-2	Species composition, relative abundance and biomass of fish collected by electrofishing near the Dresden Station, 1981.	3-49
3.3-3	Species composition, relative abundance and biomass of fish collected by seining near the Dresden Station, 1981.	3-50
3.3-4	Species composition, relative abundance and biomass of fish collected by gill netting near the Dresden Station, 1981.	3-51
3.3-5	Total number, average catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location near the Dresden Station. 1981.	3-52

Mumber	<u>Title</u>	Page
3.3-6	Total number and relative abundance of fish collected by seining at each sampling location near the Dresden Station, 1981.	3-54
3.3-7	Total number, average catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location near the Dresden Station, 1981.	3-55
3.3-8	Physicochemical measurements recorded at each fish sampling location in the Dresden Pool near the Dresden Station, June 1981.	3-56
3.3-9	Physicochemical measurements recorded at each fish sampling location in the Dresden Pool near the Dresden Station, July 1981.	3 -5 8
3.3-10	Physicochemical measurements recorded at each fish sampling location in the Dresden Pool near the Dresden Station, August 1981.	3-60
3.3-11	Physicochemical measurements recorded at each fish sampling location in the Dresden Pool near the Dresden Station, September 1981.	3-62
3.3-12	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location near the Dresden Station, 23 June 1981.	3-64
3.3-13	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location near the Dresden Station, 7 July 1981.	3-65
3.3-14	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location near the Dresden Station, 21 July 1981.	` 3-67
3.3-15	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location near the Dresden Station, 3 August 1981.	3–69
3.3-16	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location near the Dresden Station, 18 August 1981.	3-71
3.3-17	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location near the Dresden Station, 8 September 1981.	3-73

Number	<u>Title</u>	Page
3.3-18	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location near the Dresden Station, 21 September 1981.	3~75
3.3-19	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location near the Dresden Station, 24 June 1981.	3-77
3.3-20	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location near the Dresden Station, 8 July 1981.	3-78
3.3-21	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location near the Dresden Station, 22 July 1981.	3-80
3.3-22	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location near the Dresden Station, 5 August 1981.	3-82
3.3-23	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location near the Dresden Station, 20 August 1981.	3-84
3.3-24	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location near the Dresden Station, 10 September 1981.	3-86
3.3-25	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location near the Dresden Station, 23 September 1981.	3-88
3.3-26	Species composition and percent of catch of fish collected by seining at each sampling location near the Dresden Station, 24 June 1981.	3~90
3.3-27	Species composition and percent of catch of fish collected by seining at each sampling location near the Dresden Station, 6 July 1981.	3-91
3.3-28	Species composition and percent of catch of fish collected by seining at each sampling location near the Dresden Station, 21 July 1981.	3-93
3.3-29	Species composition and percent of catch of fish collected by seining at each sampling location near the Dresden Station, 4 August 1981.	3-95

Number	<u>Title</u>	Page
3.3-30	Species composition and percent of catch of fish collected by seining at each sampling location near the Oresden Station, 19 August 1981.	3-97
3.3-31	Species composition and percent of catch of fish collected by seining at each sampling location near the Dresden Station, 9 September 1981.	3-99
3.3-32	Species composition and percent of catch of fish collected by seining at each sampling location near the Dresden Station, 22 September 1981.	3-101
3.3-33	Number and mean condition factor of select species of fish collected at each sampling location near the Dresden Station, June - September 1981.	3-103
3.3-34	Incidence of physical abnormalities, disease, or parasites of fish collected at all sampling locations near the Dresden Station, 22-24 June 1981.	3-105
3.3-35	Incidence of physical abnormalities, disease, or parasites of fish collected at all sampling locations near the Dresden Station, 6-8 July 1981.	3-106
3.3-36	Incidence of physical abnormalities, disease, or parasites of fish collected at all sampling locations near the Dresden Station, 20-23 July 1981.	3-107
3.3-37	Incidence of physical abnormalities, disease, or parasites of fish collected at all sampling locations near the Dresden Station, 3-5 August 1981.	3-108
3.3-38	Incidence of physical abnormalities, disease, or parasites of fish collected at all sampling locations near the Dresden Station, 18-20 August 1981.	3-109
3.3-39	Incidence of physical abnormalities, disease, or parasites of fish collected at all sampling locations near the Dresden Station, 8-10 September 1981.	3-110
3.3-40	Incidence of physical abnormalities, disease, or parasites of fish collected at all sampling locations near the Dresden Station, 21-23 September 1981.	3-111
3.3-41	Yearly catch values for each species obtained by electro- fishing at Location 1 near the Dresden Station, 1974-1981.	3-112

Number	<u>Title</u>	<u>Page</u>
3.3-42	Yearly catch values for each species obtained by electro- fishing at Location 2 near the Dresden Station, 1974-1981.	3-114
3.3-43	Yearly catch values for each species obtained by electro- fishing at Location 5 near the Dresden Station, 1974-1981.	3-116
3.3-44	Yearly catch values for each species obtained by electro- fishing at Location 6 near the Dresden Station, 1974-1981.	3-118
3.3-45	Yearly catch values for each species obtained by electro- fishing at Location 7 near the Dresden Station, 1974-1981.	3-120
3.3-46	Yearly catch values for each species obtained by electro- fishing at Location 9 near the Dresden Station, 1974-1981.	3-122
3.3-47	Yearly catch values for each species obtained by electro- fishing at Location 10 near the Dresden Station, 1974-1981.	3-124
3.3-48	Yearly catch values for each species obtained by seining at Location 1 near the Dresden Station, 1971-1981.	3-126
3.3-49	Yearly catch values for each species obtained by seining at Location 2 near the Dresden Station, 1971-1981.	3-128
3.3-50	Yearly catch values for each species obtained by seining at Location 5 near the Dresden Station, 1971-1981.	3-130
3.3-51	Yearly catch values for each species obtained by seining at location 7 near the Dresden Station, 1971-1981.	3-132
3.3-52	Yearly catch values for each species obtained by seining at Location 9 near the Dresden Station, 1971-1981.	3-134
3.3-53	Yearly catch values for each species obtained by gill netting at each location near the Dresden Station, 1980-1981.	3-136
3.3-54	Common and scientific names of fishes collected by all gear types below Dresden Island Lock and Dam, 1981.	3-138
3.3~55	Species composition, relative abundance and biomass of fish collected by electrofishing below Dresden Island Lock and Dam, 1981.	3-139
3.3-56	Species composition, relative abundance and biomass of fish collected by seining below Dresden Island lock and Dam, 1981.	3-140

Number	<u>Title</u>	<u>Page</u>
3.3-57	Species composition, relative abundance and biomass of fish collected by gill netting below Dresden Island Lock and Dam, 1981.	3-141
3.3-58	Total number, average catch-per-unit-effort, and percent of fish collected by electrofishing at each sampling location below Dresden Island Lock and Dam, 1981.	3-142
3.3-59	Total number and relative abundance of fish collected by seining at each sampling location below Dresden Island Lock and Dam, 1981.	3-144
3.3-60	Total number, average catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location below Dresden Island Lock and Dam 1981.	3-145
3.3-61	Physicochemical measurements recorded at each fish sampling location below Dresden Island Lock and Dam, June 1981.	3-146
3.3-62	Physicochemical measurements recorded at each fish sampling location below Dresden Island Lock and Dam, July 1981.	3-147
3.3-63	Physicochemical measurements recorded at each fish sampling location below Dresden Island Lock and Dam, August 1981.	3-149
3.3-64	Physicochemical measurements recorded at each fish sampling location below Dresden Island Lock and Dam, September 1981.	3-151
3.3-65	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location below Dresden Island Lock and Dam, 22 June 1981.	3-153
3.3-66	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location below Dresden Island Lock and Dam, 6 July 1981.	3-154
3.3-67	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location below Dresden Island Lock and Dam, 22 July 1981.	3-155
3.3-68	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location below Dresden Island Lock and Dam, 3 August 1981.	3-156
3.3-69	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location below Dresden Island Lock and Dam, 18 August 1981.	3-157

<u>Number</u>	<u>Tîtle</u>	<u>Page</u>
3.3-70	Species composition, catch-permunit-effort, and percent of catch of fish collected by electrofishing at each sampling location below Dresden Island Lock and Dam, 8 September 1981.	3-158
3.3-71	Species composition, catch-per-unit-effort, and percent of catch of fish collected by electrofishing at each sampling location below Dresden Island Lock and Dam, 21 September 1981.	3 - 159
3.3-72	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location below Dresden Island Lock and Dam, 24 June 1981.	3-160
3.3-73	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location below Dresden Island Lock and Dam, 7 July 1981.	3-161
3.3-74	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location below Dresden Island Lock and Dam, 22 July 1981.	3-162
3.3-75	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location below Dresden Island Lock and Dam, 5 August 1981.	3-163
3.3-76	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location below Dresden Island Lock and Dam, 20 August 1981.	3-164
3.3-77	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location below Dresden Island Lock and Dam, 10 September 1981.	3-165
3.3-78	Species composition, catch-per-unit-effort, and percent of catch of fish collected by gill netting at each sampling location below Dresden Island Lock and Dam, 23 September 1981.	3-166
3.3-79	Species composition and percent of catch of fish collected by seining at each sampling location below Dresden Island Lock and Dam, 22 June 1981.	3-1.67
3.3-80	Species composition and percent of catch of fish collected by seining at each sampling location below Dresden Island Lock and Dam, 6 July 1981.	3-168

<u>Number</u>	<u>Title</u>	Page
3.3-81	Species composition and percent of catch of fish collected by seining at each sampling location below Dresden Island Lock and Dam, 22 July 1981.	3-169
3.3-82	Species composition and percent of catch of fish collected by seining at each sampling location below Dresden Island Lock and Dam, 4 August 1981.	3-170
3.3-83	Species composition and percent of catch of fish collected by seining at each sampling location below Dresden Island Lock and Dam, 17 August 1981.	3-171
3.3-84	Species composition and percent of catch of fish collected by seining at each sampling location below Dresden Island Lock and Dam, 9 September 1981.	3-172
3.3-85	Species composition and percent of catch of fish collected by seining at each sampling location below Dresden Island Lock and Dam, 22 September 1981.	3-173
3.3-86	Number and mean condition factor of select species of fish collected at each sampling location below Dresden Island Lock and Dam, June - September 1981.	3~174
3.3-87	Incidence of physical abnormalities, disease or parasites of fish collected at all sampling locations below Dresden Island Lock and Dam, 22-24 June 1981.	3-176
3.3-88	Incidence of physical abnormalities, disease or parasites of fish collected at all sampling locations below Dresden Island Lock and Dam, 6-8 July 1981.	3-177
3.3-89	Incidence of physical abnormalities, disease or parasites of fish collected at all sampling locations below Dresden Island Lock and Dam, 20-23 July 1981.	3-178
3.3-90	Incidence of physical abnormalities, disease or parasites of fish collected at all sampling locations below Dresden Island Lock and Dam, 3-5 August 1981.	3-179
3.3-91	Incidence of physical abnormalities, disease or parasites of fish collected at all sampling locations below Dresden Island Lock and Dam, 18-20 August 1981.	3-180
3.3-92	Incidence of physical abnormalities, disease or parasites of fish collected at all sampling locations below Dresden Island Lock and Dam, 8-10 September 1981.	3-181

<u>Number</u>	<u>Title</u>	<u>Page</u>
3.3-93	Incidence of physical abnormalities, disease or parasites of fish collected at all sampling locations below Dresden Island Lock and Dam, 21-23 September.	3-182
3.3-94	Yearly catch values for each species obtained by electro- fishing at each location below Dresden Island Lock and Dam, 1979-1981.	3-183
3.3-95	Yearly catch values for each species obtained by seining at each location below Dresden Island Lock and Dam, 1979-1981.	3-189
4.4-1	Daily operational status at Units 2 and 3, Dresden Station, and flow data for Illinois, Kankakee and Des Plaines Rivers, 15 June - 30 September 1981.	4-14
4.4-2	Mean monthly flow data for the Kankakee, Des Plaines, and Illinois Rivers.	4-17
4.4-3	Total number and weight of all fish taxa collected during impingement sampling at the Dresden Station, 15 June - 30 September 1981.	4-18
4.4-4	Physicochemical measurements recorded at Units 2/3 intake during the June 1981 Impingement Sampling Program.	4-19
4.4-5	Physicochemical measurements recorded at Units 2/3 intake during the July 1981 Impingement Sampling Program.	4-20
4.4-6	Physicochemical measurements recorded at Units 2/3 intake during the August 1981 Impingement Sampling Program.	4-21
4.4-7	Physicochemical measurements recorded at Units 2/3 intake during the September 1981 Impingement Sampling Program.	4-22
4.4-8	Number, weight and length range of all fish taxa collected during impingement sampling at the Dresden Station, June 1981.	4-23
4.4-9	Number, weight and length range of all fish taxa collected during impingement sampling at the Dresden Station, July 1981.	4-24
4.4-10	Number, weight and length range of all fish taxa collected during impingement sampling at the Dresden Station, August 1981.	4-25

Number	<u>Title</u>	<u>Page</u>
4.4-11	Number, weight and length range of all fish taxa collected during impingement sampling at the Dresden Station, September 1981.	4-26
4.4-12	Length-frequency distribution of carp collected during impingement sampling at the Dresden Station, June - September 1981.	4-27
4.4-13	Length-frequency distribution of gizzard shad collected during impingement sampling at the Dresden Station, June - September 1981.	4-28
4. 4-14	Length-frequency distribution of channel catfish collected during impingement sampling at the Dresden Station, June - September 1981.	4-29
4.4-15	Length-frequency distribution of freshwater drum collected during impingement sampling at the Bresden Station, June - September 1981.	4-30
4.4-16	Length-frequency distribution of white crappie collected during impingement sampling at the Dresden Station, June - September 1981.	4-31
4.4-17	Incidence of physical abnormalities, disease or parasites of fish collected during impingement sampling at the Dresden Station, June - September 1981.	4-32
4.4-18	Estimated number and weight of all fish taxa impinged at Units 2/3 intake during indirect open cycle operation, Dresden Station, 15 June - 30 September 1981.	4-33
4.4-19	A comparison of estimated fish impingement under different operating modes at Units 2/3 intake, Dresden Station, 1977-1981.	4-35

EXECUTIVE SUMMARY

An environmental program was conducted at the Dresden Nuclear Station in the summer of 1981 to collect biological and water quality data for assessing the environmental effects resulting from indirect open cycle operation of the station. The program encompassed three distinct studies: a water quality and plankton study in the cooling water system; a fish and macroinvertebrate study in the adjacent river system; and a fish impingement study at the intake of Units 2 and 3. Water quality data are presented in a separate report by Brinker (1982).

High river flows were encountered throughout the June - September sampling period, especially in the Kankakee River in June and July. As a result, the Kankakee River was the principle source of cooling water for the station.

In evaluating the total effect of the Dresden Station and cooling pond on phytoplankton, there appeared to be no consistent enhancement or decrease in algal abundance, but chlorophyll \underline{a} concentration was reduced through the cooling system. A shift in the cooling pond algal community to blue-greens, as previously noted during variable blowdown operation, was not observed in the present study.

Zooplankton abundance decreased slightly after condenser passage but was offset by increased abundance in the cooling pond in most months, particularly for the cladocerans <u>Diaphanosoma</u> and <u>Moina</u>.

Sediment of the Illinois River in Dresden Pool was principally silt and fine sand with some clay. The benthic macroinvertebrate community composition and species dominance were similar at each of the three river locations, being principaly saprophilous tubificids. Organisms were generally most abundant at the location furthest downstream from the discharge. An increase in tubificid densities directly downstream of the discharge during indirect open cycle operation, as noted in earlier studies, was not observed in the present study.

The greatest occurrence and abundance of fish in the Dresden Pool study area were found at the discharge in most months; sunfishes and the emerald shiner were particularly more abundant there. A variety of species, such as the redhorse spp., showed no preference for the discharge as evidenced by their rather even distribution in the study area or their greater abundance in the cooler areas of the river. This indicates that temperature is not the sole contributing factor associated with spatial differences in fish distribution.

There were no consistent or pronounced differences in fish abundance among locations below Dresden Island Lock and Dam. The emerald shiner accounted for much of the spatial and temporal differences in catches.

The fish composition in the Dresden Pool study area has fluctuated over eight years of study (1974-1981) with a trend toward increasing numbers of species at some locations. The relative abundance of fish has also fluctuated with no distinct upward or downward trend. The greatest abundance of fish has

been recorded at the discharge in all years. Indirect open cycle operation in the summer of 1981 did not result in any major changes in the distributional patterns of fish compared to previous years under closed or variable blowdown modes; the one exception was that fish avoidance was not observed at the discharge during the period of warmest discharge temperatures, as was typically noted in previous years. The cooler discharge temperatures associated with indirect open cycle than under closed or variable blowdown modes of operation provides a possible explanation for the observed change at the discharge in 1981.

An estimated 225,879 fish weighing 2,421 kg were impinged at the intake of Units 2 and 3 during indirect open cycle operation from 15 June through 30 September 1981. Carp and gizzard shad accounted for most of the impinged fish. This estimate was lower than the estimate for the same time period in 1977 and in 1978 when the station operated under the variable blowdown scheme. The major difference in fish impingement between 1981 and previous years was the number of young carp impinged. The large number of impinged carp in 1981 probably resulted from a strong 1981 year class associated with high spring and summer flows in the Kankakee River. Excluding carp from the impingement estimates, the difference in the number of fish impinged in 1981 vs. 1977 and 1978 was even more pronounced. Numerically, the estimated escapement of fish from Dresden Cooling Pond and impinged at the intake of Units 2 and 3 were similar during the period of indirect open cycle operation in 1981.

1.0 INTRODUCTION

Commonwealth Edison Company (CECo) was granted temporary permission by the Illinois Environmental Protection Agency (IEPA) to operate in an indirect open cycle mode at their Dresden Nuclear Station during the summer of 1981. IEPA issued a modified NPDES Permit (No. 0002224) which allowed CECo to operate indirect open cycle from 15 June through 30 September to collect information to make a final determination on its operating mode. In association with the modified permit, the Illinois Pollution Control Board (IPCB) granted CECo an alternate thermal discharge standard for the Dresden Station that coincided with the life of the permit.

The purpose of the Environmental Program was to collect biological and water quality data to assess the environmental affects resulting from indirect open cycle operation at the Dresden Station. The program, approved by the IEPA, encompassed three distinct studies for assessing station affects on water quality and the aquatic biota: a water quality and plankton study in the cooling water system; a fish and macroinvertebrate study in the adjacent river system; and an impingement study at the intake for Units 2/3.

The specific objectives of the program were as follows:

- To describe changes in water chemistry and plankton assemblages as they passed from the Kankakee and Des Plaines rivers through the Dresden Station and through the cooling pond under indirect open cycle operation;
- To determine the affects of indirect open cycle operation on the fish and benthic macroinvertebrate communities in the vicinity of the station; and,
- To document fish impingement at the intake for Units 2/3 while operating under indirect open cycle conditions.

The design of the 1981 fish study was consistent with historical monitoring in the vicinity of the Dresden Station. These data were compared to determine long-term trends in the indigenous fish populations and to assess the affects of Dresden Station operation, under various operating modes, on these fishes.

Because of the large volume of data presentations generated for this report, tables and figures are presented at the end of each section of the report.

2.0 WATER QUALITY AND PLANKTON STUDIES

2.1 STUDY AREA DESCRIPTION

The study area encompassed the source water bodies and the Dresden Station intake and cooling water system (Figure 2.1-1). Seven locations (Locations A through G) were established along the route of the cooling water mass. beginning at the lower Kankakee and Des Plaines Rivers, through the river intake and station discharge canals and ending at the cooling pond spillway (Table 2.1-1). The study design was to sample the same water mass as it moved from one sampling point to the next, based on a time schedule that considered transit times through the system. Average transit times from Location C (intake forebay) to each of the other sampling points with six circulating water pumps in operation are taken from calculated values obtained from a simulation model developed by NUS Corporation (1976) and are presented in Table 2.1-2. A second estimate of the time of travel through the cooling pond was obtained in July 1981 by CECo (1982) using fluorescent dye as a tracer of the water mass passing through the pond. The calculated mean travel time through the pond (from the lift station to the spillway) from the dye study was similar to the NUS model prediction (55 and 57 hours. respectively). Because of the similarity between the two estimates, the model values were considered acceptable and were therefore used in the present study.

Once sampling was initiated, it was assumed that transit times were as specified for six pump operation. Sample collection at Location G (cooling pond spillway) thus began approximately 59 hours after sample collection was initiated at Location C. River Locations A and B were sampled shortly before Location C. The actual time of transit from Locations A and B to Location C was not determined. The time schedule for collection of samples at each of the seven locations is presented in Table 2.1-3.

Electronic Filing - Received, Clerk's Office : 10/16/2015 SCALE ILLINOIS I MILE 3000 FLOW REGULATION STATION 2000 STATION PLAINES UNITS & 8 3 DISCHARGE BOAD DRESOEM POOL I POOL Z POOL IL POOL III

Figure 2.1-1 Schematic of water chemistry and plankton sampling locations, Dresden Station Cooling System.

TABLE 2.1-1 SAMPLING LOCATIONS FOR WATER CHEMISTRY, PHYTOPLANKTON, AND ZOOPLANKTON, DRESDEN STATION, JUNE-SEPTEMBER 1981.

Location	Description
А	Kankakee River, 0.5 mile upstream of Units 1, 2, and 3 intake canals near the transmission lines.
В	Des Plaines River, 0.5 mile upstream of the confluence with the Kankakee River, adjacent to the Joliet Yacht Club in the main channel (RM 273.5).
С	Dresden Station, Units 2/3 intake forebay.
D	Dresden Station, Units 2/3 condenser water discharge canal near the underground discharge port from the station.
E	Discharge canal in front of the lift station and prior to entry into Pool I of the cooling pond.
F	Downstream side of County Line Road Bridge which divides Pools 3 and 4 of the cooling pond.
G	Pool 5 of the cooling pond near the spillway where water is discharged from the pond.

TABLE 2.1-2 APPROXIMATE COOLING WATER TRANSIT TIMES FOR LOCATIONS C, D, E, F, AND G.

Locations	Time	Cumulative Time
Location C to Location D	0.06 hours	0.06 hours
Location D to Location E	1.57 hours	1.63 hours
Location E to Location F	36 hours	37,63 hours
Location F to Location G	21 hours	58.63 hours

TABLE 2.1-3 SAMPLING SCHEDULE BY LOCATION AND TIME INTERVAL, DRESDEN WATER QUALITY AND PLANKTON STUDIES.

Day	Location	Time 1	Time 2	Time 3	Time 4	Project Tasks
Tuesday	Α	0730 - 0800	1030 - 1100	1330 - 1400	1630 - 1700	Water qualimty, phytoplankton, zooplankton
Tuesday	В	0700 - 0730	1000 - 1030	1300 - 1330	1600 - 1630	Water quality, phytoplankton, zooplankton
Tuesday	С	0800 - 0830	1100 - 1130	1400 - 1430	1700 - 1730	Water quality, phytoplankton, zooplankton
Tuesday	D	0804 - 0819	1104 - 1119	1404 - 1419	1704 - 1719	Water quality, phytoplankton, zooplankton
Tuesday	E	0938 - 1008	1238 - 1308	1538 - 1608	1838 - 1908	Water quality, phytoplankton, zooplankton, prep. samples
Wednesday- Thursday	F	2138 - 2208	0038 - 0108	0338 - 0408	0638 - 0708	Water quality, phytoplankton, zooplankton
Friday- Saturday	G	1838 - 1908	2138 - 2208	0038 - 0108	0338 - 0408	Water quality, phytoplankton, zoopJankton

2.2 WATER QUALITY

2.2.1 Introduction

Previous studies at the Dresden Station have generally noted changes in certain water quality parameters in the discharge water after passage through the cooling water system (Ellis and Shipley 1978). These changes indicated that the cooling pend, under closed cycle operation, functioned as a treatment facility whereby concentrations of most nutrients i.e., phosphorus, ammonia and nitrite, and densities of bacteria were lower in the discharge than in the source or receiving waters. The improvement in water quality in the Illinois River is probably minor because of the low discharge associated with closed cycle or variable blowdown operation. Variable blowdown is defined as an operational scheme whereby the station operates under closed cycle mode (<50,000 gpm blowdown to the Illinois River) until intake water temperature exceeds 33 C (91.5 F) at which time additional blowdown to the river, not to exceed 500,000 gpm, is permitted. During indirect open cycle operation, however, large volumes of water from the cooling pand are discharged to the Illinois River which could result in considerable improvement in water quality (Ewing 1981).

To further examine the extent of change in water quality during passage through the cooling water system under indirect open cycle operation, the 1981 cooling system study was designed to characterize the physicochemical constituents of the water in the source water bodies and in the cooling water system from late June through September when the station was operating indirect open cycle. Changes were evaluated based on the differences in physicochemical values at the various locations established in the source water bodies and throughout the cooling water system.

The water quality study was conducted through a cooperative program in which personnel from CECo and EAI participated. Water samples and field chemistry measurements were taken by EAI personnel and the samples delivered to CECo (OAD) for analysis. This report describes the water quality field procedures associated with handling of water samples after collection and the field measurements of physicochemical parameters. Other aspects of the field procedures as well as laboratory procedures are described in a separate water quality report by Brinker (1982).

2.2.2 Field Procedures

Water samples were placed in labeled containers provided by CECo and stored in coolers containing ice immediately after collection. All samples were transported to CECo's laboratory in Maywood, Illinois, within 24 hours after collection for analysis. Chain-of-custody procedures were implemented that documented the transfer of samples from EAI to CECo personnel.

Temperature (C), dissolved oxygen (DO) in milligrams per liter, pH (units) and specific conductance (umhos/cm) were measured in the field using a Hydrolab Water Quality Measurement System. Instrument calibration was performed in the field each day before and after samples were collected. The temperature probe was calibrated against a certified mercury thermometer.

į

The DO probe was calibrated by the Winkler method based on duplicate DO measurements. The pH probe was calibrated against a pH reference buffer solution of pH 7 (\pm 0.01 pH unit at 25 C). A pH buffer solution of pH 10 was used as an extra calibration check on most dates. Specific conductance was calibrated against a potassium chloride reference solution of 717.8 \pm mmhs/cm at 0.005 M. As a quality assurance check, duplicate DO samples were generally analyzed about midway through the sampling event. Calibration test data for each sampling date are reported in Appendix F.

To further describe ambient conditions at the time of collection, the following observations (many of which were subjective) were made:

Weather Conditions

Air Temperature Wind Direction Wind Description (Still, Breeze, Moderate, Gusts, etc.) Precipitation (Drizzle, Sprinkle, Rain) Cloud Cover (approximate percent)

Water Surface Conditions (Flat, Ripple, Choppy)

Time of Day

Field observation data are reported in Appendix G.

2.2.3 Results and Discussion

The results of the water quality study are discussed by Brinker (1982).

2.2.4 References

- Brinker, S. 1982. Dresden Nuclear Station water quality study in the Dresden Cooling Pond during indirect open cycle operation, June 15 September 30, 1981. Unpublished.
- Commonwealth Edison Company. 1982. Dresden Cooling Pond dye tracer study performed by Commonwealth Edison Company, July 7, 1981 July 11, 1981. Unpublished.
- Eilis, D.B. and G. L. Shipley. 1978. Water chemistry and bacteriology in Environmental studies of the Des Plaines, Kankakee, and Illinois Rivers near the Dresden Station. Report by Hazleton Environmental Sciences Corp. to Commonwealth Edison Co., Chicago. Chapter 2, 30 pp.
- Ewing, B. 1981. The effect of Dresden Station indirect open cycle operation on water quality in the Illinois River. Testimony presented at the Illinois Pollution Control Board hearing, 5 May 1981.
- NUS Corporation. 1976. An investigation of cooling lakes for the closed cycle operation of electric generating stations. Vol. 1. Study of the cooling water system for Units 2 and 3 at the Dresden Nuclear Power Station. Report prepared by NUS Corp. for Commonwealth Edison Company, Chicago.

2.3 PHYTOPLANKTON

2.3.1 Introduction

A phytoplankton sampling program was conducted to describe changes in algal assemblages as they pass from the Kankakee and Des Plaines rivers through the Dresden Station and through the cooling ponds under indirect open cycle operation. The intention was to sample the same water mass as it moved from one sampling point to the next. Average transit times from the station intake to each of the other sampling points is presented in Table 2.1-2.

2.3.2 Field and Analytical Procedures

2.3.2.1 Field Procedures

Single phytoplankton samples were collected from seven locations (A, B, C, D, E, F, and G) (Table 2.1-1, Figure 2.1-1) during June, July, August, and September 1981. Sampling was conducted once per month during a 12-hour period at a frequency of once every three hours. Single samples were collected from a depth of one meter at each location; each sample consisted of 250 ml taken from one six-liter Kemmerer sampler. A total of 112 samples were collected.

One set of samples was taken for the analysis of species composition, abundance (numbers/ml) and biovolume (μ l/l). Each sample was placed in a labeled polyethylene bottle and preserved immediately with Lugol's solution at a rate of at least 1 ml Lugol's solution per 100 ml sample as recommended by Standard Methods (APHA et al. 1976). Lugol's solution was used because it: (a) was gentle to fragile forms of algae, such as naked flagellates, and (b) served to stain the chloroplasts of active, viable algae, thereby assisting in the determination of live and dead forms.

A second set of samples was collected for the analysis of chlorophyll a and pheophytin a. Samples were placed in appropriately labeled polyethylene bottles. The samples were protected from chlorophyll a degradation by storing the samples under ice in a dark cooler. One of the greatest causes of pigment degradation is strong sunlight; therefore, care was exercised throughout the collecting and analytical procedure to prevent sunlight interaction with the samples and extracts. Subsamples (50 ml from each sample) were filtered onto 0.45 µm pore size glass-fiber filters at the field laboratory. Samples were appropriately labeled, iced and kept in the dark during transport to the analytical laboratory.

2.3.2.2 Laboratory Procedures

The inverted microscope method (Lund et al. 1958, Weber 1973) was employed to identify and enumerate phytoplankton. Each preserved sample was mixed, and an aliquot transferred into a settling chamber designed for use on a Zeiss Standard UPL inverted microscope. Algae were identified and cells (10- μm lengths for filaments with indistinguishable cells) enumerated at 400% or 1000% magnification under oil immersion. Most identifications were made to

species, and all to the genus level. Separate enumerations were made of "live" (cells containing chloroplasts) and "dead" cells (those without chloroplasts). The analysis of each phytoplankton sample was considered complete when a total of 1,000 live and dead cells had been counted or when a $50.2 \, \text{mm}^2$ field (100 mm field x 0.502 mm depth of field) had been scanned. Enumeration of phytoplankton was reported as follows:

<u>Algal Form</u>	Reporting Units
Unicellular	Each cell or diatom frustule
Colonial	4 cells (Aphanocapsa, Aphanothece and Microcystis reported in 50 cell units)
Filamentous	100 μ m lengths

Phytoplankton abundance (units/ml) was reported separately for live and dead algae at each location and for each time period.

The cell dimensions of 10 individuals of each "live" taxon were measured during the microscopic analysis. Individual measurements were made of phytoplankton collected from the Kankakee River, Des Plaines River and cooling pond locations (Locations A, B and F, respectively). These dimensions were inserted into the volumetric formula that best approximated the shape of the taxon (Hohn 1969, Vollenweider 1974). By this method, an approximate biovolume per cell was calculated for each taxon. These data, along with the enumeration data, were used to calculate phytoplankton biovolumes (LI/I) at Locations A, B and F for each time period.

Phytoplankton was analyzed by the fluorometric method for chlorophyll a and pheophytin a concentrations per Method 1002 G.2 and 1002 G.4 of Standard Methods (APHA et al. 1976). The filtered pigment samples were eluted in 90 percent aqueous acetone for 24 hours at 4 C under dark conditions and then subjected to ultrasonic disruption (Vollenweider 1974, Weber 1973). After samples were clarified by centrifugation, their fluorescence was determined before and after the addition of 1N HCl (Lorenzen 1966, Yentsch and Menzel 1963). Standard equations (Strickland and Parsons 1972, APHA et al. 1976) were used to calculate pheophytin concentrations and chlorophyll a (corrected for pheophytin a). These concentrations were reported per cubic meter of water (mg/m³).

Field and laboratory records were maintained to assure that chain-of-custody procedures were followed in accordance with the EA quality assurance program.

2.3.2.3 Data Handling and Analysis

After sample analysis, the data was computer processed using quality control techniques and verified and documented programs. The resultant data tables contained the density (units/ml) and percentage composition for each taxon and total phytoplankton for each location and time period (reported separately for live and dead phytoplankton). Biovolume (μ 1/l) was reported for live

organisms and kept separate by time period and location. Biovolume at Locations A, B and F was determined based on separate measurements at each location. Chlorophyll a and pheophytin a concentrations were reported (mg/m^3) by time period and location.

2.3.3 Results and Discussion

The following section discusses only those phytoplankton enumerated as "live". The densities of "dead" algae may reflect mortalities caused by plant operation, but these numbers could not be accurately separated from those attributed to normal phytoplankton life cycles or other environmental conditions. Therefore, only the data on "dead" cells was provided. Detailed data on densities of live and dead phytoplankton are presented in Appendix A and summaries of dominant live species and major divisions are reported in Tables 2.3-1 through 2.3-15.

2.3.3.2 Community Composition

Of the six algal divisions encountered throughout the study period, diatoms (Bacillariophyta) and green algae (Chlorophyta) usually comprised the major portion of the total phytoplankton at all locations. Diatoms constituted most of the algal community in the water mass sampled before it reached the cooling ponds (Table 2.3-16). Green algae, however, dominated Location F (between Pools III and IV) in June and July. Previous studies in the area of the Dresden Station also documented diatoms as the dominant algal form (Bernabe 1976a, 1976b, 1977; Altstaetter 1978).

Phytoplankton densities in the Des Plaines River were always larger than in the Kankakee River (Table 2.3-1). This may have been a result of slightly higher water temperatures (Table 2.3-17) and slower currents in the Des Plaines River. The Kankakee River also experienced unusually high flows during the study period compared to the previous 10 year period (Section 4.4.1), particularly in June, which undoubtedly had an effect on phytoplankton abundance in the river.

Diatoms were comprised primarily of the centric forms, especially species of Cyclotella, Melosira, Stephanodiscus and Skeletonema. The peak observed abundance for diatoms and total phytoplankton occurred during July at Location B, (Des Plaines River) but densities in general were highest in August.

The phytoplankton community in June was dominated by diatoms at all locations except Location F. Nonetheless, Cyanophyta, Chlorophyta, and Euglenophyta all reached maximum abundance in June at Location B. Chlorophyta, primarily Ankistrodesmus falcatus, were especially prevalent at Location B, composing 42 percent of the total phytoplankton. Except for the Des Plaines River location, densities were generally quite low in June, perhaps due to flooding conditions and the subsequent heavy amounts of silt in the water. Eddy (1934) and Hynes (1970) also report that turbid floodwaters greatly reduce plankton populations in river systems.

Densities in July increased at all locations perhaps due to favorable seasonal conditions. Daily photoperiod had increased as well as river temperatures. The seasonal peak of phytoplankton was reached in July at Location B.

Diatoms continued to dominate the community except at Location F where green algae, composed primarily of <u>Pediastrum</u> and <u>Scenedesmus</u>, constituted over one-third of the totals.

Diatoms constituted 67 to 78 percent of the total algal assemblage in August when seasonal densities were greatest at five of the seven locations. Chlorophyta also occurred frequently in August. Nater temperature was apparently not the major factor contributing to these higher densities, as temperature remained fairly constant from July. Maximum late summer densities were apparently reached by various diatom taxa.

Densities in September decreased from August at all locations except Location F where diatoms were slightly more abundant than at other locations. Diatoms continued to dominate the community at all sampling locations. Skeletonema potamos, one of the most prevalent diatoms, composed nearly 45 percent of the total phytoplankton at Location C. Chlorophyta also continued to be an important division in September.

Chlorophyll a values were generally highest in the Des Plaines River (Location B) (Tables 2.3-18 through 2.3-21). Values were lowest in June and July except at Location B where green algae reached maximum abundance. The largest concentration occurred in July (20.588 mg/m³). Pheophytin, usually absent or present in low concentrations, did not follow any pattern through the study period (Tables 2.3-18 through 2.3-21). The highest value for pheophytin, found in the cooling pond during August (0.573 mg/m³), may be correlated to a decrease or breakdown in chlorophyll a pigment at that time.

Maximum mean values for biovolume occurred in June in the Des Plaines River (Tables 2.3-22 through 2.3-25). Coelastrum cambricum, a green algae, composed as much as 92 percent of the total June biovolume in the cooling pond (Location F). Biovolume values were always higher in the Des Plaines River (Location B) than in the Kankakee River (Location A) or in the cooling pond (Location F). Centric diatoms, primarily Cyclotella, Melosira, Stephanodiscus and Skeletonema, consistently had the highest biovolume values.

2.3.3.2 Changes Through the Cooling Water System

Densities of total phytoplankton and major algal divisions were consistently comparable between the Kankakee River (Location A) and the station intake (Location C) during all sampling months, indicating that cooling water was drawn primarily from the Kankakee River. Diatoms composed the majority of the total phytoplankton in the Kankakee River and in the cooling pond system. Cairns (1956) and Bush, Welch and Mar (1974) report that optimum temperatures for diatom growth occur from 15 to 30 C. For that reason it is unusual for diatoms to continue to dominate the community at Locations D, E, F, and G when temperatures during most sampling periods were over 30 C.

Phytoplankton densities from the station intake (Location C) and discharge (Location D) through the spray and cooling canals to the lift station (Location E) were relatively unchanged in June, July, and September (Figure 2.3-1). In August, however, densities increased slightly as water progressed through the system.

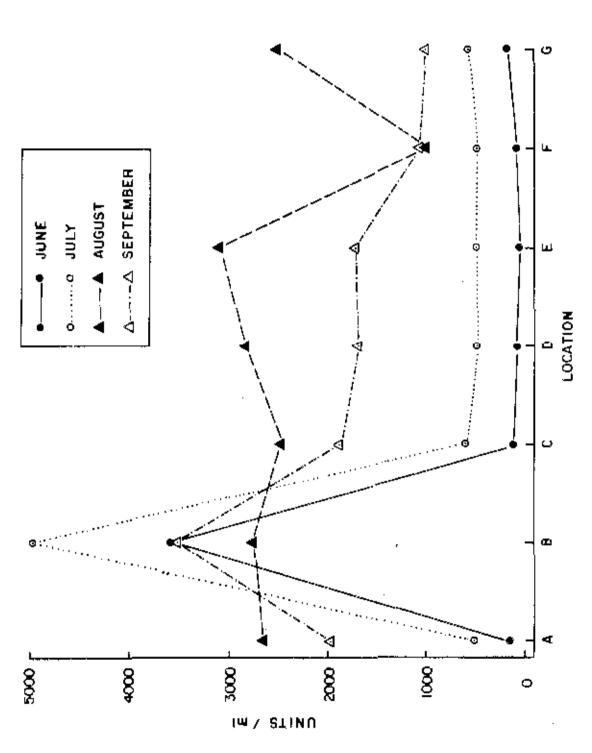
The densities of algal populations within the series of cooling ponds did not follow a definite pattern (Figure 2.3-1). In June and July total phytoplankton increased slightly from Location E to Location G (spillway of the cooling pond prior to discharge spray canal), although demsities were low at all three locations in both months, presumably because of high flows in the Kankakee River. Densities decreased by two-thirds from Location E to Location F in August (3,074 units/ml to 998 units/ml). This appreciable decrease may have been caused by zooplankton grazing. Very high densities of cladocerans, especially Moina micrura, were reported from Location F in August (Section 2.4). Densities were doubled at the next location (Location G) perhaps due to the retention time within the cooling pond which increased production in some groups of algae, although densities of cladocerans peaked in abundance. Total phytoplankton in September decreased progressively through the cooling pond. Cladocerans continued to be an important part of the total zooplankton in September which again may have accounted for lower algal densities.

Blue-green algae (Cyanophyta) which commonly occur in water with high temperatures were a minor constitutent of the total phytoplankton during the study period (Tables 2.3-14 and 2.3-16). A previous study in the cooling pond (Altstaetter 1978) during variable blowdown operation reported that Cyanophyta became the dominant algal division in the cooling pond in July and August. Patrick (1969) reports that blue-greens usually dominate at temperatures over 35 C. The lack of blue-greens as important constituents in the cooling ponds may have been due to their low numbers in the Kankakee River which contributed the majority of the make-up water to the cooling pond system and the cooler temperatures in the pond associated with indirect open cycle operation.

Biovolume values reflected the pattern seen for total phytoplankton, with highest numbers reported in the Des Plaines River (Figure 2.3-2). The highest value in June can be attributed to maximum densities of Chlorophyta, in particular <u>Coelastrum cambricum</u>. Values were also high in August due to seasonal increases in algal production. In all months except July, biovolume was lowest in the cooling pond (Location F).

Chlorophyll <u>a</u> values decreased from the Kankakee River and intake locations as they passed through the cooling system (Figure 2.3-3). The decrease in chlorophyll <u>a</u> was often accompanied by increases in pheophytin (chlorophyll degradation product). In most months the pattern of total phytoplankton abundances between locations was not reflected in the chlorophyll <u>a</u> concentrations. Monthly similarities between total densities and chlorophyll <u>a</u> values can be detected, in that June and July algal abundance and chlorophyll <u>a</u> pigments were generally lower than August and September.

2.3.4 Summary and Conclusions


- Intake water was drawn primarily from the Kankakee River based on the similarity in phytoplankton assemblages at Locations A and C.
- Diatoms and green algae composed the major portion of the total live phytoplankton at all locations.

- Densities in general were highest in August, although the seasonal peak for diatoms and total live phytoplankton occurred in July at Location B in the Des Plaines River.
- 4. Phytoplankton densities in the Des Plaines River were always higher than in the Kankakee River.
- 5. During June and July, phytoplankton densities increased slightly in the cooling pond while in September abundances declined. Densities in August decreased dramatically from Location E to F, then increased at Location G.
- Chlorophyll <u>a</u> values decreased from the Kankakee River and intake location as they passed through the cooling pond system.
- Biovolume values reflected the pattern seen for total phytoplankton, with highest numbers reported in the Des Plaines River.
- 8. In evaluating the total effect of the Dresden Station and cooling pond system on phytoplankton, there appeared to be no consistent enhancement or decrease in algal densities but chlorophyll a values were reduced through the system. Various changes do take place within the system, but the phytoplankton taken from the Kankakee is not appreciably different in density to that at Location G, prior to discharge into the Illinois River for the river flows encountered during the study.
- Indirect open cycle operation did not result in a shift of the cooling pond algal community to blue-greens in the summer as was noted for variable blowdown operation.

2.3.5 References

- Altstaetter, C.A. 1978. Phytoplankton. in Environmental studies of the Des Plaines, Kankakee, and Illinois rivers near the Dresden Station, January-December 1977. Report by Hazleton Environmental Sciences for Commonwealth Edison Company, Chicago. Chapter 3.
- APHA, AWWA, and WPCF. 1976. Standard methods for the examination of water and wastewater. 14th ed. Amer. Public Health Assn., Washington, D.C. 1193 pp.
- Bernabe, E.R. 1976a. Phytoplankton. in Environmental monitoring (thermal) of the Des Plaines, Kankakee, and Illinois rivers near the Dresden Station, January-December 1974. (IBT No. 1705). Report by Industrial BIO-TEST Laboratories, Inc. for Commonwealth Edison Company, Chicago. Chapter 3.
- . 1976b. Phytoplankton. in Environmental monitoring (thermal) of the Des Plaines, Kankakee, and Illinois rivers near the Dresden Station, January-December 1975. Report by NALCO Environmental Sciences for Commonwealth Edison Company, Chicago. Chapter 3.

- 1977. Phytoplankton. in Environmental monitoring (thermal) of the Des Plaines, Kankakee, and Illinois rivers near the Dresden Station, January-December 1976. Report by NALCO Environmental Sciences for Commonwealth Edison Company, Chicago. Chapter 3.
- Bush, R.M., E.B. Welch, and B.W. Mar. 1974. Potential effects of thermal discharges on aquatic systems. Env. Sci. Tech. 8(6):561-568.
- Cairns, J. Jr. 1956. Effects of increased temperatures on aquatic organisms. Industrial Wastes. 1(4):150-152.
- Eddy, S. 1934. A study of fresh-water plankton communities. Contribution from the Zoological Laboratory of the Univ. of Illinois. No. 448.
- Hohn, M.H. 1969. Quantitative and qualitative analyses of plankton diatoms. Bull. Ohio Biol. Survey 3:1-211.
- Hymes, H.B.N. 1970. The ecology of running waters. Univ. Toronto Press, Toronto. 555 pp.
- Lorenzen, C.J. 1966. A method for the continuous measurement of <u>in vivo</u> chlorophyll concentration. Deep Sea Res. 13:223-227.
- Lund, J.W.G., G. Kipling, and E.D. LeCren. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia 11:143-170.
- Patrick, R. 1969. Some effects of temperature on freshwater algae <u>in</u> Biological Aspects of Thermal Pollution. Krenkel and Parker (eds.) Vanderbilt Press.
- Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of sea water analysis. 2nd ed. Fish. Res. Board Can. Bull. 167. 311 pp.
- Vollenweider, R.A. (ed.). 1974. "A manual on methods for measuring primary production in aquatic environments," International Siological Program Handbook Number 12, Second edition. Blackwell Scientific Publication, London. 225 pp.
- Weber, C.I., ed. 1973. Biological field and laboratory methods for measuring the quality of surface waters and effluents. Program Element 1BA027. U.S. EPA, Cincinnati, Ohio. 174 pp.
- Yentsch, C.S. and D.W. Menzel. 1963. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Research 10:221-231.

Mean density (units/ml) of total live phytoplankton collected from seven locations near the Dresden Station, June - September 1981 Figure 2.3-1

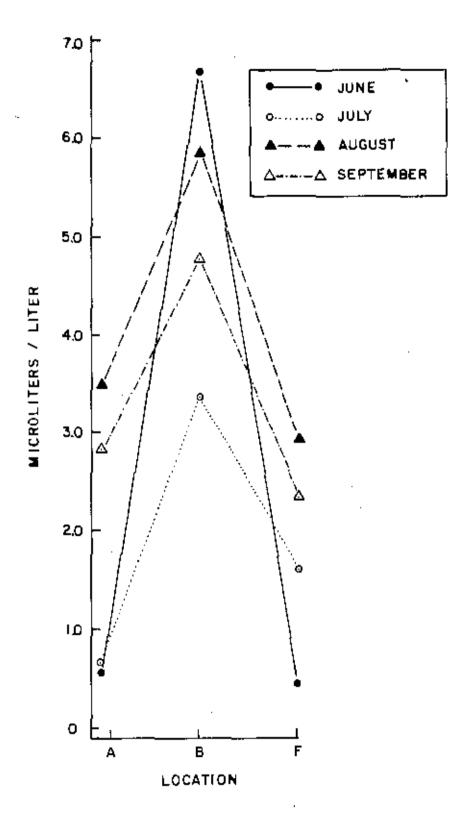
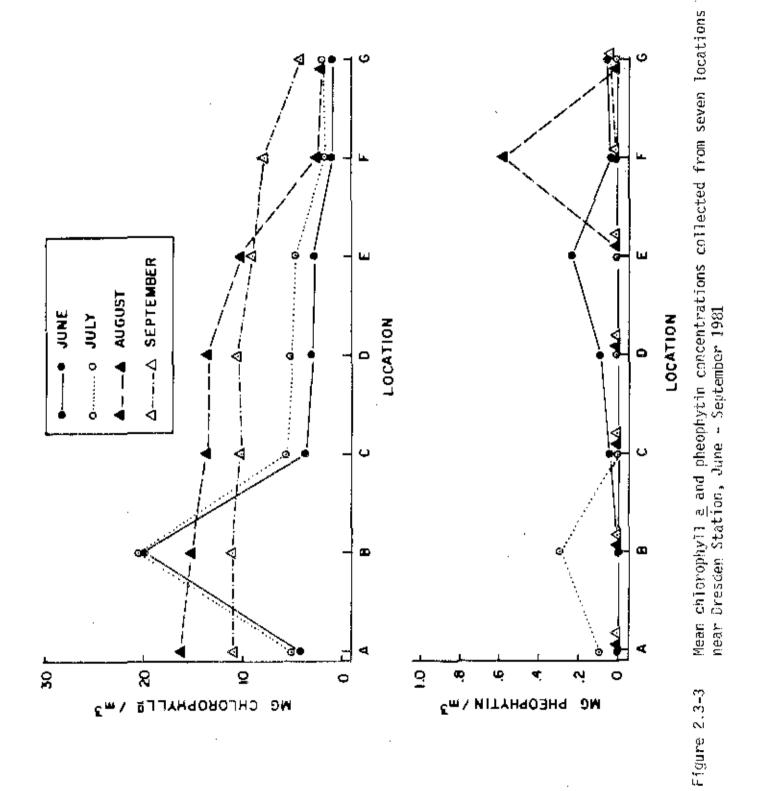



Figure 2.3-2 Mean biovolume (µ1/1) of total live phytoplankton collected from three locations near Dresden Station, June - September 1981

2-17

TABLE 2.3-1 MEAN DENSITY (units/ml) AND RANGE OF TOTAL LIVE PHYTOPLANKTON COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSIEM, JUNE - SEPTEMBER 1981

					1007 11-01-11-11-11-11-11-11-11-11-11-11-11-1			
Date		Location A	Location 8	Location C	Location D	Location E	Location F	Location 6
23 Jun	M ean	159.0	3598.5	126.0	70.8	42.3	66.0	176.3
	Range	112-226	3369-3970	47-193	28-122	27.58	40-103	112~251
21 Jul	Меал	509,0	4991.8	608.5	491.5	491.3	506.0	567.5
	Капде	368~628	4879~5100	550-690	407-663	330~686	424-555	425-798
25 Aug	Mean	2654,5	2750.5	2481.0	2829.5	3074.5	998.3	2517.0
	Range	2521~2774	2555-2898	2382-2591	2724-2966	2806~3589	967-1033	2288-2703
15 Sep	Mean	1956.5	3530.0	1853.5	1660.5	1705.5	1064.0	1034.5

MEAN DENSITY (units/ml) AND RANGE OF TOTAL LIVE BACILLARIOPHYTA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981. 1919.7 1744.2048 Location G 303.0 192-323 119.5 84-149 712.8 650-79\$ Location F 214.9 163-266 760.2 675-836 820.8 785-912 1B.5 9-37 1275.0 1225-1395 2420.8 2179~2892 Location E 409,0 304,509 39.5 27-56 2080.8 2006--2197 1187.3 1114-1358 Location D 278.0 191-463 34.8 28-55 1786.5 1678-1893 1521.8 1438-1609 Location C 351.8 271-439 60.5 18-1033533.0 **33**79-3693 1552.0 1421-1646 2875.8 2614.3164 Location B 1858.2 1687-1971 1900.0 1804-2000 1385.0 1278-1508 Location A 375.0 280-509 107.0 46.:68 Калде Mean Range Mean Range Mean Range TABLE 2,3-2 15 Sep 23 Jun 25 Aug Date 21 Jul

MEAN DENSIFY (units/ml) AND RANGE OF LIVE CYCLOTELLA MENEGHINIANA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 TABLE 2,3-3

	LUCA	LUCATIONS IN THE DRESDEN STATION CONTING SISTEM, JUNE - SEPTEMBER 1901	KESDEN SIMIIC	JR COULTNE ST	Sich, dune -	SERTENBER 190	TC	
Date		Location A	Location B	Location C	Location D	Location E	Location F	Location 6
23 Jun	Mean Range	16.5 0-28	432.5	9.5 0.19	00	4.5 0-9	2.3 0~9	28.0 9-56
21 Jul	Mean Range	91,3 61-136	730.3 640.823	64,3 37~98	79.3 56-131	64.3 23-103	60.8 51-75	160,5 108-290
25 Aug	Mean Range	125.0 86-145	474.5 271~582	237.3 192.288	356.5 262-442	162.0 122-201	69.8 20-108	322~491
15 Sep	Mean Range	33.5 22~56	99.5 65-131	44.5 34-b1	41.0 28-51	77.0 51.111	59.0 38~86	31.8 23-41

410.0 245.3 224-273 2.3-4 MEAN DENSITY (units/ml) AND RANGE OF LIVE MELOSIRA DISTANS COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 Location F 166.0 134.201 Location E 169.5 152-189 7.0 00 Location D 113.5 82-145 00 Location C 146.3 122-168 90,5 17.5 9-33 Location B Location A 107.3 54-126 7.0 0-14 Neari Range Mean Range Mean Range Mean Range TABLE 23 Jun 25 Aug 15 Sep Date. 21 Jul

MEAN DENSITY (units/ml) AND RANGE OF LIVE MELOSIRA GRANULATA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 157.3 136-189 Location $\frac{23.0}{0-93}$ 20.0 0-61 54.0 37.79 Location F 21.0 0-65 174.5 140~248 165,3 102-217 Location E 112.0 51-229 4.8 0-14 $\frac{11.9}{0-47}$ 00 53.0 42-65 Location C 21.0 0.47 Location B 128.0 72-159 57.3 37-75 54.5 28-81 00 Location A 47.5 9-79 33.8 0-54 10.5 0-37 Mean Range Mean Range Mean Mange Mean Range 1ABLE 2.3-5 15 Sep 23 Jun 25 Aug 21 Jul Date

TABLE 2.3	-6 MEAN D IN THE	TABLE 2.3-6 MEAN DENSITY (units/ml) AND IN THE DRESDEN STATION COOLD	s/ml) AND RAN	GE OF LIVE NJ SYSTEM, JUNE	TZSCHIA ACIC	nl) AMD RANGE OF LIVE NITZSCHIA ACICULARIS COLLECTED FROM SEVEN LOCATIONS ON COOLING SYSTEM, JUNE - SEPTEMBER 1981	TED FROM SEV	EN LOCATIONS
Date		Location A	<u>lecation B</u>	Location C	Location B	Location E	Location F	Location G
23 Jun	Mean Range	9.3 0-28	112.0 84.140	6.8 0.9	6.8 0.9	2.3 0-9	0 0	4.5 0~9
21 մա	Mean Range	28.0 19-42	. 179.0 150-201	65.3 42-84	40.8 23-65	34.0 19-47	13.0 5~19	17.3 0-51
25 Aug	Mean Kange	138.5 96-175	16.5 0-28	93.5 65-122	139,5 105-178	118.5 72-168	29.3 13-38	47.8 0-70
15 Sep	Mean Range	50.3 42-61	52.0 37-78	44.8 28.64	69.5 48-89	33-47	27.3 20~38	19.0 13-25

TABLE 2.3-7 MEAN DENSITY (units/ml) AND RANGE OF LIVE <u>NITZSCHIA PALEA</u> COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981

Date		Location A	Location B	Location C	Location D	<u>Location E</u>	<u>Location F</u>	Location 6
23 Jun	Mean	23.5	124.0	18.5	23.5	16.5	11.5	23.3
	Range	0-47	84-150	9-28	19~37	0 - 28	9-19	0-37
21 Jul	Mean	13/.8	159.0	140.3	102.B	106.5	66.5	76.0
	Range	79-201	122-196	117-187	75-154	56~150	79~103	42~103
25 Aug	Me an	417.8	86.5	325.0	498.3	724.0	192.3	588.0
	Range	374-472	56~105	269-383	465-542	654-849	171-225	526~669
15 Sep	Mean	113.3	166.8	139.3	86.8	122.3	16.3	19.5
	Range	97-131	131-196	108-173	55-112	98-148	10-21	11-25

MEAN DENSITY (units/ml) AND RANGE OF LIVE SKELETONEMA POTAMOS COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 Location 6 248.3 187-346 119.3 70-157 5.8 1.4 1.4 Location F 142.0 108-169 94.0 59-121 Location E 829.5 781-926 657.5 616-689 $\frac{3.5}{0-14}$ တစ Location D 464.5 409-526 538.3 477-625 Location C 576.8 526.624 827.5 776-926 4.8 0-19 2053.3 1973-2122 Location B 535.3 505-590 699.5 643-785 881.3 795.-966 Location A 786.8 725-857 717.3 690-781 42.0 28-56 4.8 0:19 Nean Range Range Mean Range Mean Range Mean TABLE 2, 3-8 23 Jun 15 Sep 25 Aug Date -21 Jul

TABLE 2.3-9 MEAN DENSITY (units/ml) AND RANGE OF LIVE STEPHANODISCUS INVISITATUS COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981

<u>Date</u>		Location A	Location B	<u>Location C</u>	Location D	<u>Location E</u>	Location F	Location 6
23 Jun	Mean Range	2.3 0-9	4.8 0-19	0 0	0 0	0 0	· 0	0 0
21 Jul	Mean	28.0	208.0	0.0	11.5	9.5	1.3	14.D
	Range	14-51	154-285	5-≤	0-28	0-19	0-5	5-28
25 Aug	Mean	418 _• 9	393.3	274.3	367.5	234.3	9.8	102 . 8
	Range	398 ~ 453	353-432	236-304	327-416	192-276	6–12	86124
15 Sep	Mean	268.5	1412.8	337.3	307.3	228.8	48.3	73.3
	Range	220-309	1200-1624	282-397	257-351	199- 2 62	37-65	4998

TABLE 2.3-10 MEAN DENSITY (units/m1) AND RANGE OF TOTAL LIVE CHLOROPHYTA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981

Date .		Location A	Location B	Location C	Eccation D	Location E	Location £	Location 6
23 Jun	Mean Range	35.8 1947	1506.0 1326-1674	9.8 0-18	14.3 0-19	00	33.0 19-47	52.0 19-66
21 Jul	Mean Nange	116.0 79.145	11.78.8 837-1408	204.5 147-275	183.0 172~199	170.3 138-237	260.8 242-298	231.0 182-275
25 Aug	itean Range	\$34.2 500-573	739.2 684-874	550.8 520-590	632.0 4.79735	615.5	260.0 161-283	560.0 511-600
15 %p	Mean Range	350,5	387.3 238-568	224.5 178-241	338,3	260.0 210-284	157.5 130-195	233.3 208-260

MEAN DENSITY (units/ml) AND RANGE OF LIVE ANKISTRODESMUS FALCATUS COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE 7 SEPTEMBER 1981 **TABLE 2.3-11**

Date		Location A	Location B	Location C	Location D	Location E	Location F	Location G
23 Jun	Mean Range	21.3 19-28	514.5 449-580	00	14.3 0~19	00	11.8 0-19	14.0 0-28
21 Jul	Mean Range	11.5 9~19	170.5 98-243	25.5	18.5 9.28	11.8 0-19	43.3 28-51	18.5 9~28
25 Aug	Mean Range	24.0 7-42	92.5 68-112	60.8 40.29	82.3 65-96	95.0 65~139	15.8 0-42	34.0 26-42
15 Sep	Mean Range	86.3 61-111	81.0 56-100	38.8 20-65	61.0 34-81	43.8 28~55	24.0 15-37	24.3 20~30

TABLE 2.3-12 MEAN DENSITY (units/ml) AND RANGE OF LIVE <u>SCENEDESMUS ABUNDANS</u> COLLECTED FROM SEVEN LOCATIONS IN THE DRESDUM STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981

Date		Location A	Location B	Location C	Location D	Location E	Location F	<u> Location G</u>
23 Jun	Mea n Range	0 0	48. 0 33-68	0 0	0	0 0	0 0	0
21 Jul	Mean	12.8	301.5	19.8	18.8	23.3	20.5	10.5
	Range	7-18	129~395	12-29	16-21	16-34	7-30	5-22
25 Aug	Mean	74.0	157.5	59.8	77.0	88.8	5J .8	107.5
	Range	36-99	123-190	46-76	53-99	67-113	33-69	77-129
15 Ѕер	Mean	56.3	72.0	45. 3	37.5	43. 3	9.8	2.0
	Range	39-74	0-136	38~55	28-48	34-62	5-12	0-3

Location G $\frac{93.5}{73-109}$ 41.0 00 MEAN DENSITY (units/mi) AND RANGE OF LIVE SCENEDESMUS DENFICULATUS COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 67.0 43-85 33.5 Location E 102.0 0~150 20-54 16.8 7-29 00 Location D 160.0 151-178 42.3 13.3 7-19 00 Location C 49.5 36-60 83.3 71~94 00 Location B 00 0 Location A 78.5 48-106 47.0 33-72 17.5 11-24 00 Mean Range Mean Bange Mean Range **M**ean Range TABLE 2.3-13 25 Aug Sep 23 Jun 3 Date 15

LE 2.3-14		MEAN DENSITY (units/an) AND RANGE OF TOTAL LIVE CYANOPHYTA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981	S/AI) AND RANK TION COOLING	GE OF TOTAL USYSTEM, JUNE	IVE CYANOPHY - SEPTEMBER	TA COLLECTED	FROM SEVEN L	OCATIONS
Date		Location A	Location B	Location C	Location D	Location E	Location F	Location 6
23 Jun	Mean Range	00	248.0 183-324	23.0 19-32	14.8 0-29	2.8 0~11	00	5.5 0-22
21 մա)	Mean Range	8.3 6-12	156.0 144-184	2.0 0-8	60	1.8	22.3 0-47	0
25 Aug	Mean Range	63.0 0-112	126.0 59-223	14.0 0-22	20	16.8 8-29	18.0 11-24	11.2 D-34
15 Sep	Mean Range	\$6.5 34-90	172.5	51.3 28-110	81.0 67-107	67.8 36-87	55.0 40-72	46,9 36~53

TABLE 2.3-15 MEAN DENSITY (units/ml) AND RANGE OF TOTAL LIVE EUGLENOPHYTA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981

Date		Location A	Location B	Location C	Location D	Location E	Location F	Location G
23 Jun	Mean Range	4.5 0-9	79.3 47103	9.3 0-19	0	D 0	0	Q 0
21 Jul	Mean	9.3	39.5	32.5	23.5	18.5	4.8	29.3
	Range	0-23	14-93	9-75	19~33	9-33	0-14	14-47
25 Aug	Mean	22.8	36.8	24.0	16.5	20.5	5.0	14.5
	Range	0-5!	26-49	9-54	12-21	12-35	2-7	7-26
15 Sep	Mean	34.0	14.8	21.8	5.0	8.8	1.0	5.8
	Range	12-79	0-34	8-33	0-12	3–16	0-2	4-9

TABLE 2.3-16 MEAN PERCENT OCCURRENCE OF MAJOR ALGAL DIVISIONS COLLECTED IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981

					Location			
<u>Date</u>	<u>Division</u>	A	В	<u> </u>	D_	E	F	G
đun	Bacillariophyta	65.5 ^a	43.3	44.2	57.8	95.3	27.5	57.9
	Chlorophyta	16.7	42.0	7.3	18.5	0	56.0	29.2
	Cyanophyta	0	6.9	24.8	16.9	4.8	0	2.8
	Euglenophyta	2.4	2,2	5.0	0	0	0	. 0
	Cryptophyta	7.4	5.6	15.6	5.9	Ċ	25.6	11.4
Jul	Bacillariophyta	73.4	70.9	57.4	54.6	58.2	42.0	52.3
	Chlorophyta	23.2	22.8	34.3	39.1	35.9	52.0	41.9
	Cyanophyta	1.7	3.4	<1	0	<1	4,3	0
	Euglenophyta	<1	<1	5.1	5.0	3.7	1.0	5.2
	Cryptophyta	0	2,2	2.9	1.4	2.0	1.0	1.0
Aug	Bacillariophyta	71.6	67.6	72.0	73.6	78.7	76.2	76.3
_	Chlorophyta	20.2	26.9	22,2	22.3	20.1	20.1	22.3
	Cyanophyta	2.4	3.7	1.0	0	1.0	1.8	<1
	Euglenophyta	1.0	1.3	1.0	1.0	1.0	1.0	1.0
	Cryptophyta	5.0	1.0	4.2	3.5	<1	1.5	<1
Sep	Bacillariophyta	71.0	81.8	82.3	71.4	74.8	77.2	68.9
	Chłorophyta	17.8	10.8	12.1	20.4	15.3	14.7	22.6
	Cyanophyta	2.9	4.9	2.7	4.8	3.9	5.2	4.6
	Euglenophyta	1.7	<1	1.2	<1	1.0	<1	1.0
	Cryptophyta	6.1	1.9	1.9	3.1	5.6	2.8	3.4

 $^{^{\}rm a}$ All percent occurrences are of "live" organisms.

TABLE 2.3-17 SUMMARY OF MEAN TEMPERATURES (C) RECORDED IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981

				Location			
Date	A	В	C		<u></u>	<u> </u>	G
Jun	21.6	23.2	21.8	38.4	35.9	30.6	28,4
Ju]	24.0	27.7	24.7	37.9	36.1	32.0	30.7
Aug	24.5	27.1	25.5	38.5	36,2	31.5	30,1
Sep	22.8	25.1	23.1	35.6	29.4	24.7	21.6

TABLE 2.3-18 CHLOROPHYLL A AND PHEOPHYLIN CONCENTRATIONS (mg/m³) FROM SAMPLES COLLECTED AT LOCATIONS A, B, C, D, E, F, AND G IN THE DRESDEN STATION COOLING SYSTEM, JUNE 1981	CHI.OROI A, B, 1	PHYLL a. C, D, E	AND PHEC	PHYTIN C	CONCENTR DRESDE	MATIONS (N STATIC	(mg/m³) N C00L1	FROM SAN NG SYSTE	APLES CO EM, JUNE	LLECTED 1981	AT LOCA	TIONS		
LOCALION	1	 - - - - -	:		3		A		<u>-4</u> 		· ·		0	
DATE TIME	CHL MG/B#3	РНА ₩5/₩*3	į	ONL PHA MG/MR3 · NB/MR3	ENL MG/M83	PHA ME/#*3	CHL MG/8#3	PHA NG/H*3	CHL MG/H*3	PHA MG/M*3	UHL MG/M#3	PHA MG/MA3	CHL. MG/M#3	PNA MG/H*
197E	3.908	000000	13,333	0.000	3,256	0,162	3,256	0.280	3,254	0,280	1.020	0.00.0	1.412	0.000
¢.	4,559	00000	12.549	000-0	₹06°£	0.00.0	3,908	000.0	1.804	0.453	1.176	0.000	902.0	0.018
м 2-3:	4.539	000'0	27.450	0000	3,256	000.0	1,882	0.677	2,822	0.125	0,941	0.038	£2£11	0.000
T	3.90₽	0.000	27,450	0.000	3,691	00000	3,039	0,000	3,691	0.082	1.098	0.094	0,863	0.159
zen z	4.233	0,000	26.195	0,000	7,529	0.041	3.021	680.0	2,893	0.235	1.059	0.033	1,0/8	0,044

	LI	6611 !	为 以 以 以 以	၂ ။။ ၂ မွာမ		۷GU,	0161	וטנ	111166	. 10/11
	!	9	PHA #6/M*3	00.0	0000					
	:	1 1 1 1 1 1 1 1	CHL MG/M#3	2.822	1.882 2.678					
TIONS			PHA M5/M*3	0.000	0.000 0.023 0.064					
AT LOCA			CHL MB/M¥3	2.039	1,255					
LLECTED	1981		PHA MG/M#3	000-0	00000					
MPLES CO	ΕΜ, JULγ 	і Ш - -	CHI. MG/M#3	4.993	4+342 4+342 4-830					
FROM SA	NG 5751		PHA MG/M*3	000.0	2000					
(mg/m ³)	TON CONT		CHL HB/FAX3	4,559 5,210	6,513 5,210					
RATIONS	EN SIAL		FHA MG/M¥3	000*0	0000					
CONCENT	HE DIRESD	ن	CHL. HG/M#3	4.776 5.862	5.590					
SOPITYTIN TO S	1 IN 1		PHA MG/M*3	1,147	0.000 0.000 0.787					
AND PHE	., F., AINI	# ## # # # # # # # # # # # # # # # # #	CHL MG/MX3	13+333 18-823	28.234 20.588					
TABLE 2.3-19CHLOROPHYLL a AND PHEOPHYTIN CONCENTRATIONS (mg/m3) FROM SAMPLES COLLECTED AT LOCATIONS	C, U, L		PHA KG/M¥3		0.600					
-19CHLOR	A, E,	4	CHC NG/16%3	4,559	4,1539 5,048					
TABLE 2.3		LOCATION	DATE TIME	JULY 3.	4 WEAN	2-	36			
	ľ	<u></u>	E	Ē						

	:	
AL EUCALIUMS	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	u.
ABLE Z.STZB GALBONGFILL & AND FILSTHIER CONCENTIONS (MG/M) FINST SAMPLES COLLECTED AT ESCALIONS A. B. C. D. E. F. AND G IN THE PRESDEN STATION COOLING SYSTEM, AUGUST 1981		ш
N COOLING SYSTE		0
ORESDEN STATIO		ی
F, AND G IN THE	!	д
A, 3, C, D, E, F,		4
45-6-5 3-0A		DCATION

	Elegt	ronic Filing - Rec	eived, Clerk's	Office :	10/16/2015
9	CHL MG/M#3	1,961 2,171 1,804 2,388 2,081			
L.	PHA NG/H#3	0.615 0.261 0.993 0.422			
_	CKL MG/M*3	3.039 3.039 1.954 2.171 2.555			
lal	PHA HG/M#3	00000			
<u>.</u>	CHL MG/H*3	7,843 12,549 10,196 10,392			
	P44 MG/M#3	00000			
	CHL MG/M#3	10,980 11,764 15,686 16,470 13,725			
	244 HB/H#3	00000	٠		
ی	CHL MG/M#3	10,980 11,764 16,470 15,686 13,725			
	FHA #87M#3	00000			
д.	CHL HG/N¥3	15,686 14,970 13,333 15,098			
	PHA HG/N#3	00000	٠.		
∢	CHS AG/H#3	14.117 14.901 17.254 18.039 16.078		· .	-
LOCATION	BATE TIME	AUGUST 1. 3. 4 MEAN	2-37		

		ectr 8/92 10 ctr	ronic		ig ing	00000	Rec S	eiv	ed,
	9	CHL MG/MX3		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					
LIONS		FHA MG/M*3		00000	000	900.0	00610		
A) LOCA 381		CNL MG/MX3		10,196	8.627	7,039	17011		
LLECTED EMBER 19		PHA MG/M#3		0000	0.000	0000	20010		
MPLES CU EM, SEPT		CHIL RG/N#3		9,627	10,195	9,411	71017		
FROM SAI NG SYSTI		PHA MB/BK3		0000	000+0	0000	00010		
(mg/m ₂)	1	CHI MG/M#3		10,196	10.196	10,930	10.086		
RALIONS EN STATI	a	PHA MG/M≇3		000.0	0000	900	000.0		
CONCENT IE ORESD		CHL MG/Mx3		11,764	8,527	8,627	041.01		
COPHYLIN G IN TI		PHA MG/M\$3		00000	0000	950	200		
AND PHE	&	CAL MG/M#3		14,117	10.580	9.411	A 1 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
OPUNTL a	6	PHA MG/M\$3		000.0	0000	0000	200		
1 CHLOR A, B,		CHL MG/M\$3		6,296	16,470	11,764	(a/+)1		
TABLE 2.3-21 CHLOROPHYLL A AND PHEOPHYLIN CONCENTRATIONS (Mg/m²) FROM SAMPLES COLLECTED AT LOCATIONS A, B, C, D, E, F, AND G IN THE ORESOEN STATION COOLING SYSTEM, SEPTEMBER 1981	LOCATION	DATE TIME		SEP1 1	ילחצי	77 77 77 77 77	JIE HIL		2-

Clerk's Office : 10/16/2015

BIOVOLUME OF LIVE PHYTOPLANKTON COLLECTED AT LOCATIONS A, B, AND F IN THE DRESDEN SYATION COOLING SYSTEM, JUNE 1981 TABLE 2.3-22

	Location G	% <u>1/1</u> ч	79 .		
	Location F	<u>₹</u> (71)	2002 25.4 25.4 23.4 23.4 23.4 23.5 20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.08	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Lucation E	3 17/12	re .		
	<u>Location D</u>	77Lu	rs,		
;	Location C	1/14 X	rq		
1981	Location B	<u>#1/ %</u>	.053 0.8 .125 2.0 .014 0.2 .043 0.7 .062 0.1 .082 0.1 .082 0.1 .082 1.3 .082 1.3 .087 1.1 .083 0.5 .033 0.1 .033 0.1 .033 0.1	6.354	.065 1.0 .161 2.5 .023 0.4 1.830 28.6 .421 6.6 .046 0.7 1.198 18.7 1.198 18.7 1.259 5.6
SYSTEM, JUNE 19	Location A	% - /{त	000; 000; 000; 000; 000; 000; 000; 000	.086	.03.1 4.3 .004 1.5 .002 0.7 .001 0.3 .001 0.3 .006 26.0 .048 18.6
STATION COOLING SYST		Taxa_	Actinastrum hantzschii v. Fibwiatte Ankistrodesmus falcatus Coelatrum cambricum Coelatrum cambricum Cosmarium spir. Cyclotella fomus Cyclotella fomus Cyclotella fomus Cyclotella fomus Cyclotella fomus Cyclotella fomus Euglena dous Cyclotella fomus Nitzschia actularis Mitzschia actularis Mitzschia dissipata Mitzschia dissipata Mitzschia dissipata Mitzschia dissipata Mitzschia dissipata Coenedesmus acuminatus Scenedesmus acuminatus	Total Blovolume	Actinastrum hentzschii virviatile Thuviatile Ankistrodesmus falcatus Ankistrodesmus spiralis Coelastrum cambricum Cryptomonas cvata Cyclotella atumus Cyclotella meneghiniana Euglena acus Euglena acus Euglena acus
		iii	-		2
		Sampling Date			
			9.30		

TABLE 4.3-24 LUUNT.	TABLE	2.3-22	(CONT.
---------------------	-------	--------	--------

				111		- J - E - E	(001111)					
			Locat	ton A	Locat	ion B	<u>Location C</u>	Location D	Location E	Locati	on F	Location (
Sampling Date	<u>Time</u>	Taxa	<u>1</u> /_	<u>"</u>	$-\mu 1/1$		<u>µ1/1%</u>	ր]/1	<u>μ1/1</u> <u>τ</u>	<u> 1\fu</u>	<u>%</u> .	$\frac{\mu 1/1}{2}$
23-2/ June 1981	2	Nitzschia palea	.019	7.6	.061	J.0	a	a	ā	nos	ιa	a
		Nitzschia spp.	0	ō.	.014	0.2		•		800. 0	i.9	
		Oscillatoria tenuis Scenedesmus abundans	0	0	.101	1.6				0	0	
		Scenedesmus acuminatus	Ü	Ü	.025	0.4 12.0				0 0	0	
		Scenedesmus arcuatus	ŏ	Ö	.078	1.2				0	0	
		Scenedesmus dimorphus	Ď	ŏ	.029	0.5				Ö	ŭ	
		Scenedesmus opoliensis	0	Ü	.320	5.0				ŏ	ŏ	
		Scenedesmus quadricauda	0	0	.272	4.2				.034	5.9	
		Schroederia setigera	0	U	.003	0.1				0	O	
		Skeletonema potamos	.006	2.2	.087	1.4				0	0	
		Stephanodiscus invisitatus Trachelomonas hispida	,007 0	2.7	.033	0 9.5				0	0	
		Trache Tomonas tambowika	0	ů	.159	2.5				0	0	
				~						v	0	
		Total Biovolume	,255		6.409					.587		
	3	Actinastrum hantzschii										
		v. fluviatile	.008	-0.8	.047	0.7				0	O	
		Ankistrodesmus falcatus	.004	0.4	.138	2.2				.005	4.9	
		Ankistrodesmus spiralis Closteriopsis longissima	0	0	.016	0.3				0	Ü	
		v. tropica	.119	0.4	0	0				0	0	
		Coelastrum cambricum	0	0	2.311					ŏ	ŏ	
		Cryptomonas ovata	.095	9.0	.504	8.0				.067	71.1	
		<u>Cyclotella atomus</u>	. 0	0	.502	0.8					2.3	
		Cyclotella meneghiniana	.045	4.3	.931	14.7				.012		
		Euglena acus Euglena minuta	0	o o	.473 .004	$\frac{7.5}{0.1}$				0	0	
		Euglena polymorpha	.048	4.5	.185	2.9				Ö	0	
		Kirchmeriella lunaris	0	0	-013	0.2				ñ	õ	
		Lagerheimia quadriscta	Ū	õ	.003	<0.1				ŏ	õ	
•		Merismopodia tengissima	0	a	1001	<0.1				ō	ō	
		Navicula lanceoluta	.015	1.5	a	0				0	0	
		Mitzschia acicularis Mitzschia linearis	0	0	.051	0.8				0	0	
		Nitzschia palea	.018 .008	1.7	.046	0 0 .7				0	0 8.8	
		Oscillatoria tenuis	.000	0.7 0	.143	2.3				.008 0	0.8	
		Phacus caudatus	ŏ	Ű	.035	0.6				0	۵	
		Scenedesmus abundans	ŭ	ŏ	-028	0.4				ŏ	ŏ	
		Scenedesmus acumilmatus	0	Ò	.700	11.1				ŏ	Ō	
		Scenedesmus arcuatus	0	D	.10/	1.7				Ó	Ů.	
		Scenedesmus dimorphus	0	0	.033	0.5				0	0	
		Scenedesmus oppliensis	0	Ð	.203	3.2				0	Õ	
		Scenedesmus quadricauda	0	13	.181	2.9				0	Ü	

75~7(

TABLE 2,3-22 (CONT.)

					DLE 4.	3-22	(CONT.)					
			Locat	ion A	Locat	ion B	<u>Location C</u>	<u>Location D</u>	Location E	Locat	ion F	Location 6
Sampling Date Ti	ime	<u>Tāxa</u>	<u> 1</u> 1/1	<u> 4</u>	<u>u]/l</u>	_ <u>1</u> _	_ <u>ul/1 _%_</u>	<u></u>	<u>μ1/1</u> <u>%</u> .	_p4/1		. <u>21/1</u>
23-27 Jume 1981	3	Skeletonema potamos Stephanodiscus miagarae Trasbelomonas hispida	.004 .683 0	0.4 65.2 0	.0/6 0 .033	1.2 0 0.5	a	ē	a.	0 0 0	0 0 0	a
		Total Biovolume	1.04/		6.132					.094		
	4	Actimastrum hantzschii v. fluviatile Ankistrodesmus falcatus Ankistrodesmus spiralis Coelastrum cambricum Cryptomonas ovata Cyclotella atomus Cyclotella atomus Cyclotella meneghiniana Dictyosphaerium pulchellum Euglena acus Euglena polymorpha Lagerheimia quadriseta Ritzschia aclcularis Nitzschia palea Oscillatoria tenuis Pediastrum boryanum Phacus caudatus Scenedesmus abundans Scenedesmus adimorphus Scenedesmus dimorphus Scenedesmus dimorphus Scenedesmus dimorphus Scenedesmus spoliensis	.017 .006 0 .095 .00 0 .015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.1 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.041 .148 .029 1.321 .567 .038 1.491 .001 .794 .272 .003 .063 .082 .158 .713 .035 .051 1.026 .027 .127 .022 .413 .215 .002 .081 .081	7.2 0.5				.001,005	7.4 33.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		lutal Biovolume	.819		7.829					.014		

⁽a) Blovolume not calculated for Locations C, D, E, and G.

BIOVOLUME OF LIVE PHYTOPLANKTON COLLECTED AT LOCATIONS A, B, AND F IN THE DRESDEN STATION COOLING SYSTEM, JULY 1981 1ABLE 2.3-23

		TABLE	2.1	CONT	Ĭ.)					
		Location A		Location B	Location C	Location D	Location E	Location	F F	Location 6
Sampling Date Time	. Jaxa	1/1	1/1 ₀	* *	_H1/1 .*	, <u>"- "- "- "</u>	- m1/1 %	1/14	4.	1/1 <u>%</u>
21-25 July 1981 3	Actinastrum Mantzschii v. Fluviatile		2.6 .014		ς.	ę	rd		0	æ
	Anabaena spp.	.015							0 4	
	And Strodesmus Talcatus Builtethodesmus spiralis		 0.00.	6.5 0.1					ç. - 0	
	Aphanizomenon flos-aquae	÷	60-						0	
	Crucigenta apiculata							7005	0.1	
	Crucigenia quadrala							00,	۰. م	
	Crucigenia rectangularis						٠		> :	
	Lryptomonas ovata		-						7	
	Oyctotesta menegantisana Dictosobaerima oulchellam		0 .002	2 0.1				20	0	
	Englena acus								Đ	
	Euglena minuta	500.	.6 .007	7 0.2					٥	
	Euglena polymorpha								4.6	
	Euglena spp.								0	
	Lagerheimia quadriseta		0 .002	2 0.1					0	
	Melosfra granulata								0 (
	Melosira varians		ָרָרָ פּ						۰ د	
	Merismopedia tenuissima	c (0:	
	Navicula pupula		0.0						٥.	
	Mitzschia actoufarts								•	
	MILISCHIA OCCINASTROIDES	•		0 4 0 4					? c	
	NICZSCHIA CLOSTEFIUM) d	
	NITZSCBIa patea	770.	3000						-	
	Sodie to the control of the control							•	•	
	Pediastim dunlex v.							:	•	
	Motor and a company of the company o	160 2	20.49					.785	6.89	
	Padlastrem terras	•							0	
	Phacus nordstedti							0	0	
	Scenedesilus abundans							800	0.7	
	Scenedesmus aciminatus							9		
	Scenedesius arcuatus		1.4 .011					٥	0	
								.081	8.9	
	dimorphus	0	00.					0	0	
								.013	1.1	
								.012	1.0	
		0						0	0	
	Skeletonema potamos	610.	2.4 .389	0 12.7				0	0	
	Stephanodiscus Invisitatus							0	•	
	lotal Blovulume	.803	3.056	92				1-191		

Time		Lucation A	<	Lucation B	on R Lucation C	Location D	Location E	Location F	Focation G	
1		-		1			1 3			
Activost van bart schift v. 0 0.012 0.3 0.2 0.003 0.2 0.003 0.2 AMST STONGENING STATE CALLES 0.001 0.1 0.001 0.1 0.003 0.2 0.003 0.0	Take	1	: +3	- !	- !		- !	- !	- !	
	Actimastrum hantzschil fluviatile	0	Đ			ru	æ		rci	LIL
Control Cont	Anklistrodesmus falcatus Anklistrodesmus sultalis	6 6 6 6	× - 0	*	~ ~			•		
Parison Pari		,	;		- 1			?		וטו
Table Tabl	tropica	ه د	•		O n m					1111
Figure Color Col	Crucioenia apfortata	.	. 0	•	-					ונ
The color of the	Crucinenia quadrata	0	, 0		,I					111
Differentiation 1.844 27.1 27.1	Cryptomonas ovata		0		, m					115
Pulchellum 0.006 0.1 0.0	Cyclotella meneghiniana		9.4		_					•
Professional Content	Dictyosphaerium pulchelium	0	٠,					0 (•
Function Function	inglena acus	220+	- T:		Δ,			0 (٠,
Function Color C	Edglens Minuta		F. C		0)		
Fig. 10 10 10 10 10 10 10 10	Engliena spp.		ۍ د د		÷ c))		٠.,
10 10 10 10 10 10 10 10	Kinchaeriol a tunario		? =		3 –			•		
1.023	Legerhermia Guadriseta	0	0					, 0		٠,
1145 0.029 5.5 0.054 1.1 0.027 1.6 0.02 0.2 0.02 0	Melosina distans		8							_
104 0.2 0.04 0.2 105 0.8 0.05 0.6 0.01 0.01 106 0.0 0.6 0.0 0.01 107 0.1 0.1 0.1 108 0.0 0.0 0.0 0.0 109 0.1 0.1 0.2 109 0.0 0.0 0.0 109 0.0 0.0	Melosina granulata		5.5		_					. –
1465 0.05	Merismopedia tenutssima		0 (·					、
10	Mitzschia acicularis		ع د. د		e c					
1.020 3.8 0.15 0.4	NILSCHIA actinastrolnes Nifigonia ologicalim	÷ c	.		.					_
0.16 3.0 1.78 3.6 0 0 0 0 0 0 0 0 0	Witzschia nalea	.020	9		> ঘ					• • •
0 0 0 0 0 0 0 0 0 0	Oscillatoria tenuis	010	J.D		. &					
1.253 74.3 74.5 7	Oscillatoria sp.	0	٥		2			0		
1.253 74.3 7	Pediastrum boryanum	Ð	0		9			0		
Decimination Columb Colu	February IIII dupter v.	c	c	0	_					
1.004 0.7 0.04 0.8 0.00 0.1 1.005 0.1 0.00 0 0 0 1.005 0.1 0.00 0.1 1.007 1.4 0.28 0.6 0.9 1.007 1.3.2 0 0 0 0 1.007 1.3.2 0 0 0 0 1.007 1.3.2 0 0 0 0 1.007 0.0 0 0 0 0 1.007 0.0 0 0 0 0 1.007 0.0 0 0 0 1.007 0.0 0 0 0 1.007 0 0 0 0 1.007 0 0 0 0 1.007 0 0 0 1.007 0 0 0 1.007 0 1.007	Pediastrum simulex	0	, 0	0						
minatus 0 0 0 .006 0.3 watus .007 1.4 .028 0.6 0.3 .007 3.4 tical aix .071 13.2 0 0 .07 3.4 .07 3.4 .08 3.4 .007 3.4 .007 3.4 .007 3.4 .007 3.4 .007 3.4 .007 3.4 .007 3.4 .007 .007 0.1 .007 0.1 .007 0.1 .007 0.1 .007 0.1 .007 0.1 .007 0.1 .007 0.1 .007 0.1 .007	Scenedesing abundans	£00.	0.7		20					
wates .007 1.4 .028 0.6 0			ပ		9					
ticulatus			1.4		. 6					
Orbits 0 0.14 0.3 0.04 0.3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.			2.5							_
Fees is		000	.		ሳር				,	
dricauda .004 0.8 .024 0.5 .005 fgera 0 .003 0.1 .003 .0.1 amos 0 .418 8.8 .0 .0 invisitatus .020 3.7 .073 1.5 .0 rogenia forme 0 0 .004 0.1 .0 .0 .0 inflowite 0 .0.77 1.6 inflowite		ì	. •		o en					
igera 0 0 0.003 0.1 amos 0 0 .418 8.8 invisitates .020 3.7 .073 1.5 rogeniaTorme 0 0 .004 0.1 invisitates 0 0 0 .014 0.3 informity 0 0 0 .077 1.6 .535 4.731		• 00 •	0.8		e.					
amus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0							
10 10 10 10 10 10 10 10	SKeletonema potamos effortamentations apprend	9	ے م		X 0 13					
1 1 1 1 1 1 1 1 1 1	representatives invisible	200			ń –					
.535 4.73!	Trachelomonas, hispida Tracholomonas, taminuita	- 0	000		ı m ve					
.535 4.73!		ı	>							
	Fatal Blovolume	338	9	731				1.687		

Tal Browniame not calculated for Locations C. B. E. and G.

Sampling Date Time	STATI	STATION COOLING SYSTEM, AUGUST 1981 Location A Lucation B Location Cooling Location Coolin	LOCATION CO LOCATION A LOCATION D.62	COLI 1981	LECTED A	TA J	LOCATIO	INS A, B,	AND F	IN THE DRESDEN Location Locat .1/1 1/1/1	DRES	SDEN Location G
		Auk istrodesmus falcatus Auk istrodesmus spiralis Sukistrodesmus spiralis Spiralis Spiralis Collections Sparenicum Cosmarium sparenicum Corucigenia Eeffapodia Cryosobeerium purcheilum Sylomopha annuta Euglena polymorpha Corucigenia polymorpha Completial annuta Euglena polymorpha Eugl	2 965 5 965	0.151 0.033 0.033 0.033 0.033 0.033 0.055	24. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.6.1 9.1 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2					2.83 6.00	

	Location D location E location F location G $\frac{10\text{cation F}}{\text{m.I/I}}$ % $\frac{10\text{III}}{\text{m.I/I}}$ % $\frac{3}{\text{m.I/I}}$ % $\frac{10\text{III}}{\text{m.I/I}}$ % $\frac{3}{\text{m.I/I}}$	a 2014 0.25 a -0.004 0.25 a -0.004 0.007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.0 100° 10.0 100° 0 0 0 0	1.191 21.98 0 0 0 0 0 0 0 0 0 0.001 0.01 0.00 0.01	0 0 0 0 0 0 0 0 3.251 0.64 3.368 62.17 .038 0.70		0 0 0 0 0 0 111 2.06 4.001 0.01 · 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.020 104 .007 0.04 .0 0 .015 0.27 .0 U .0 U .0 0 .0 0	5.417
TABLE 2.3-24 (CONT.)	Location A Location B Location C $\frac{1}{\mu} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{\mu} \frac{1}{3} \frac{1}{3} \frac{1}{3}$.016 0.48 .043 0.72 2.007 0.21 .029 0.47 .004 0.12 .003 0.05 0.05 0.0 0.0 0.10 0.16	0.58 0.33 0.33	.823 24.88 2.668 44.60 .011 0.34 .017 0.29 .001 0.04 0 0 .010 0.39 .136 2.28 0 0 0.31 0.54 0.45	0 .042 0.61 0 0 .003 0 3.43 .276 1.12 .070		0 .011 0 .009 1.91 .915 0 0 0 0 0 0 3.03 0	0 .398 0 .605 0.77 .059 0.86 .013 1.74 .054 3.40 .035	0.05 -003 0.06 -005 0.25 -0 0.32 -042 0.14 -0 0 0.07 -001	1 2 2 2 3 3 0 6 6 6 6 6 7	5,300 5,482
	Sampling Date filme Laxa	25-29 August 1901 2 Actinastrum hantzschif v. fluvialle Anklistrodesmus faleatus Anklistrodesmus spiralis Anklistrodesmus spiralis Anklistrodesmus spiralis Aphanoizomendi flus-aquae Aphanocages sep.	Lingles Inngressing V. Triples Coclastrum cambricum Coelastrum spharricum Crucigenia apiculata Crucigenia quaddata Crucigenia cundata	Cyclotella mereghindana Unityosphacrium pulchellum Ulakatoturfi viridis Lughema acus Eugleum infuita Eugleum infuita	Euglenia spiroggyra iragilaria construens Lepocificiis ovum Melosira dranusara Melosira granusata Melosira varians	Merismopedia tenaissima Maricula cryptocephala Maricula heufferi Maricula fripumitala Maricula scirularis	NTLZSČRIG actimastroides NTLZSCRIG closterium NTLZSCRIR palea NTLZSCRIR palea NTLZSCRIR pp. 00cystris bryger Oscillatoria brouts Pediastrom boryanum	Pediastrum duplex v. rellenatum Fellenatum Phetus mordstedtii Scenedesmus äbundums Scenedesmus artuatus Scenedesmus artuatus Scenedesmus artuatus	Scenedesmus intermedius Scenedesmus intermedius Scenedesmus Ingus Scenedesmus opolitensis Scenedesmus solitenta Schroederia settigera Schroederia settigera	Stephanodiscus avinea Stephanodiscus fnvisitatus Stephanodiscus tenuis Synedva radians Tetras Thanson ingerheimii Tetras Strim staurogeorafinee	Total Blovolpue

	Lucation F tocation B	.004 0.20 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.019 0.85 .524 25,31 0 0 0 0 0 0		.041 1.96 .041 1.96 .0 0 .050 2.40 .0 0	0 0 .021 1.04 .040 1.94 .020 0.96 .036 1.74			2.070
	ocation L	ē			3				
	Location B	ä	•						
T.)	Location C	÷							
24 (CONT.)	location D	.031 0.46 .031 0.48 .003 0.04 .061 1.23	_		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 .006 0.10 .016 0.29 .019 0.29 .045 0.73	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	6.610
TABLE 2.3-24	location A $_{ m H,1/1}$ $^{ m X}$.010 0.23 .003 0.06 .006 0.14			0 0 002 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	013 0.30 032 0.76 041 0.96 045 1.29 097 2.26	000 0.35 001 0.35 001 0.35 0 0 0.34	143 3,34 1020 0,47 0 0 0 0 1003 0.07	4,203
IA	Sampling Date Time Taxa Laxa	25-29 August 1981 3 Actinastrum hantzschil v. Fluviatile Ankistrodesmus fetcatus Ankistrodesmus spiralis Ankistrodesmus spiralis	ml lum					Stephanodiscre astrea Stephanodiscus astrea Stephanodiscus invisitatus Stephanodiscus tenuis Synedra radians Trachelomonas hispida	Yotal Binunlume

TABLE 2.3-24 (CONT.)

		Location A	locati	on B	Location C	Location D	Location E	<u>Locati</u>		Incatio.	
Sampling Date Time	Даха	μ1/1 %	<u> ⊦ 1/1</u>	_ *	<u>id712</u>	p 1/1 ***	<u>171 </u>	<u> </u>		$\mu 1/1$	*
25-29 August 1981 4	Actinastrum hantzschii V.										
LV ES Magast 1866 4	(luviatile	.012 0.36	.051	0.81	2	a	£	.011	0.47	9	
	Anklatrudesems falcatus	0.000	.019	0.31				Ű	0		
	Aukistrodesmus spiralis	,002 0.07 0 0	-004 -047	$0.06 \\ 0.75$.027	0 1.13		
	Aphanizomenon (los-aquae Closteriopsis longissima v.	0 0	,047	0.73				.027	1. (3		
	tropica	o v	.021	0.34				0	0		
	Coelestrum cambricum	0 0	.450	7.23				.176	7.45		
	Crucigenia apiculata	.007 0.22	.009	0.15				.002	0.07		
	Crucigenia quadrata	0 0 0 0	-003	0.04 0.03				.002 0	0_08 0		
	Crucigenta tetrapedia Cryptomenas ovata	0 0 ,100 3.05	.002 .015	U.24				.012	0.49		
	Cyclotella meneghiniana	.867 2 6.37	2.875	46.18				.735	31.19		
	Dictyosphaerium pulchellum	.009 0.29	.008	0.13				U	o.		
	Euglena acus	.n <u>[</u> 4 0,43	.045	0.73				0	0		
	Euglena minuta	n 0 .084 2.57	.057	0.92				<.001 .040	0.01		
	Cuglema ројужногоћа Cuglema spirogyra	.084 2.57 0 0	.105	1.69				.040	0,1		
	Melosina ambigua	o v	.161	2.58				.017	0.73		
	Melosira distans	ĎĎ	0	0				118	5.01		
	<u>McTosira granu</u> lata	-166 5.04	.615	9-88				.762	32.33		
	Merismopedia tenuissima	.146 4-44	.068	1,09				Ð	Ω		
	Navicula Acufleri	.001 0.03	ე ე) O Da				0	0		
	Navicula tripunctata Mitzschia adicularis	.010 0.30 .041 1.24	.001 .011	0.02 0.18				.001 .011	0.03 0.45		
	Nitzschia actinastroides	9 0	.01	9				1001	0.05		
	Nitzschia closterium	n O	0	9				.008	0.33		
	Nitzschia palea	.056 1.69	810.	0.29				.644	1.86		
	Nitžšekia spp. Oscillatoria tennis	.001 (0.03 U 0	.003 0	0.04				0 00 2	.0		
	Pediastrim boryanum	-412 12.52	0	6				.053 0	2.26 0		
	Scenedesmus abundans	.036 1.00	.067	1.07				.017	0.74		
	Scenedesmus accentination	.034 1.03	.009	0.14				.010	0.44		
	Scenedes@0s arcuatus	.047 1.44	.041	0.66				.018	0.78		
	Scenedesmus denticulatus Scenedesmus dimorphus	.130 4.21 .903 0.10	.052 .004	0.83 0.06				-0.35	1_49 0		
	Scenedesmus Intermedius	,002 0.05	.04	0				ő	ŭ		
	Scenedesiius kongus	.008 0.25	0	0				U	0		
·	Scenedesmus opoliensis	.011 .035	.028	0.44				.007	0.32		
	Scenedesmus quadricauda	o o	U	0				.008	0.32		
	Schroederta setigera	ր 0 ccc 16 89	$^{\circ}.001$	<.01 4.87				.063	U 2.66		
	Skeletomema polamos Stephanodiscus astraea	.555 16.89 .143 4.36	.199	3.70				.120	5.08		
	Stephanodiscus invisitatus	.331 10.07		15.00				.002	0.19		
	Synedra radians	.039 1.20	0	0				.050	2.47		
	Total Usara lump	1 200	6 22F					2.356			
	Total Diovolume	3.288	6.225					C = 3-80			

 $^{^{\}rm A}$ Blovolume not calculated for locations 5. B, F, and G. $_{\odot}$.

TABLE 2.3-25 BIOVOLUME OF LIVE PHYTOPLANKTON COLLECTED AT LOCATIONS A, B, AND F IN THE DRESDEN STATION COOLING SYSTEM, SEPTEMBER 1981

	Location 6	re e
		0.30 0.15 0.15 0.15 0.15 0.10 0.10 0.03 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.13 0.03 0.0
	Location F	000. 000. 000. 000. 000. 000. 000. 000
1	Location E	ret
	Lucation D	ng .
	location C	nd .
	location B	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1981	10cat	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MBER	# H	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SEPTEMBER	Location A	900 900 900 900 900 900 900 900 900 900
STALLON COOLING SYSTEM,	Теха	Actinastrum hantzschii v. fluviatile Ankistrodesmus Falcatus Ankistrodesmus Ealcatus Ankistrodesmus Epiralis Aphanizomenon flos-equae Closteriopsis longissima v. tropica Coelastrum spp. Cosmarium spp. Crucigenia apiculata Crucigenia apiculata Crucigenia apiculata Crucigenia apiculata Cryptomonas ovata Cryptomonas andolata Melosira distans Melosira distans Melosira distans Melosira ambigua Melosira andolata Melosira andolata Mitzschia actularis Nitzschia actularis Nitzschia actularis Nitzschia actularis Nitzschia distans Nitzschia distans Nitzschia actularis Nitzschia actularis Nitzschia actularis Nitzschia bundans Scenedesmus acuminatus Scenedesmus acuminatus Scenedesmus actuatus Scenedesmus denticulatus Scenedesmus intermedius Scenedesmus intermedius Scenedesmus longus
	Tine	-
	Date	1981
	Sampling Date	15-19 Sept.
	8	-51 -51

	Location 6								
		0 2.52 2.55 7.41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		01.33 01.04 01.04	-0.0.0-	1,99 0 2,23 10,97	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	37 06 1 60 1 60	0.45 0.45 0.13 2.13
	Location F	0 -060 -170 -060 -170 -004 -004 -004	2,293	005 002 003 003	000	.038 .043	- <u>6</u> -0-6	474 647 817.	026 00.00 00.00 00.00 041.
	Location E								
 	Location 0								
(CONT.)	Location C								
2,3-25	Location B	0.02 31.85 31.85 0 0 1.55 0.16 0.10 0		0 0 0 0	1.14 1.07 4.61	4.30 0.19 1.56 14.07	0.08 0.09 0.06	3.85 3.85 0	2. 22 0. 0 0. 05 0. 05 0. 18 0. 41
- 1	Locati pl/i	.001 .731 1.405 0 .025 .025 .005	4.411	၁၉၈ ၁	. 2047 2052	8888	8 888	332.00	. 0 16 . 0 16 . 0 00 . 0 0 0 . 0 0 0 0
TABLE	Location A	6.01 6.87 13.20 25.51 0 0 0 0 0.01 0.01 0.57		0,00 0,30 0,34	0.22 0 4.92	0.02 4.96 25.76	0.36 0.17 0.03	0.58 0 3.97 0	2.20 0.13 0.39 0 0.38
	Locat vi/l	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.816	.003 .013 0	.008 0 .167	0 .001 .168	000 000 000 000 000	050. 0 0 0 0 0 0 0	.075 .004 .013 .013
!!	Tine	Schroederia setigera Skeletonema potemos Stephanodiscus intagarae Stephanodiscus intagarae Synedra ulna Tabellaria flocculosa Tetrastrum heterocanthum Tetrastrum staurogeniaforme Trachelomonas hispida Trachelomonas tambowika	lotal Biovolume	2 Actimastrum hantzschil v. Fluviatile Ankistrodesmus falcatus Ankistrodesmus spiralis Aphanizomenon flos-aquae Clostorionsis localesias v.	tropica Coelastrum cambricum Coelastrum sphaericum	Crucigenia apiculata Crucigenia apiculata Cryptomonas ovata Cyclotella meneghiniana	Cyclotella michiganiana Dictyosphaerium pulchellum Dinobryom divergens Euglena minuta	Euglena polymorpha Melosira ambigua Melosira distans Melosira granulata Melosira varians	Merismo pedia tenuissima Navicula spp. Nitzschia acfoularis Nitzschia acfinastroides Nitzschia closterium Nitzschia palea Oscillatoria tenuis
		1961							
	Sampling Date								
	Sampl	15- <u>19 %ept.</u>							

	Location 6																		
	E S	3.73	91.0	1.35	1.09	9-0-6-0-6-0-6-0-6-0-6-0-6-0-6-0-6-0-6-0-	2.72 3.53	0		0.18	0.02	0 0.62	2,68	၀၀	1.63 6.25	0 2	000	0.19	000
	Location F	270. 0	0 60	66.89 68.89 68.89	5 - 2	200°	8 8 9	0	1.929	900.		.013 1013	.057	00	.134	00	000	90.	00
	Location E																•		
	Location D																		
(CONT.)	Location C µ1/1 %																		
	Location B	4.83	0.06	500	0.32	0.01	28.21 0.38	0.25				0.84 13.52	Ċ	0.13	2.54 12.84	0.22	0.0 0.0 0.0	3.94	0.16
2.3-25	Locat PI71	.213	.003		70 PE		1.243 0.70	.011	4.406	e ;	900	. 050 . 83	0	29. 700.	.153	.013	.004	.237	ģ <u>9</u> .
TABLE	Location A	0.9 <u>1</u> 1.32	1.25	0.23	0.03	0.57	28.74 28.74	0		0.18	0.07	0.37	c	90.0	6.17	0.24	9.76	96.9	000
AT	Locat #1/1	.031	.011	989	186.0	910 100 100 100	. 432 . 975 0	0	3,392	.005	0.000	.011	0	.00 0	.138	000.	ģ. 6	0.02	900
	Taxa	reticulatum duplex v. reticulatum Phacus orbicularis	Rhodomonas minuta v. Nannoplanctica Scenedesmus abundans	Scenedesmus arcuatus Scenedesmus arcuatus Scenedesmus denticulatus	Scenedesmus of morphus Scenedesmus Tongus Scenedesmus opolitons is	Scenedesmus guadricauda Schroederla setigera Scholetonena	Stephenodiscus invisitatus Stephenodiscus invisitatus Stephenodiscus niagarae Sveedra radians	Synedra ulna	Total Biovolume	Actimastrum hamtzschii v. fluviatile	Ankistrodesmus falcatus Ankistrodesmus spiralis Aphanizomenon flos-aquae	Closteriopsis <u>longissima</u> v. tropica Coelastrum sobaericam	Coscinodiscus rothii v. Subsalsa	Crucigenia apiculata Crucigenia quadrată	<u>Cryptononas ovata</u> Cyclotella meneghiniana	Diatoma vulgare Dictyosphaerium pulchellum	Dinobryon divergens Dinobryon sociale	Ruglena minuta Euglena polymorpha Ersotta de overconorfe	Layerheimia quadriseta Lepocinclis ovum
		97 El ett	χl Mie	المحالجة الد	دمادهاده	مانمانما	والجادمان	ادمار		ω 		<u> </u>	,	00		استار خدارا		_	-
	Date	1981																	
.	Sampling Date	15-19 Sept																	
	Sall	15-1																	

	Location G		
	Location F	0.02 0.02 0.03	
	Loca L1	0 \$2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.872
	Location E		
	$\frac{\text{Location } 0}{\nu 1/1}$		
(cont.)	Location C		
	<u>я</u>	0.05.22 0.047 0.099 0.047 0.038 0.011 0.011 0.013 0.03 0.03 0.03 0.03 0	
2.3-25	Location B	11.22.12.22.13.30.30.30.30.30.30.30.30.30.30.30.30.30	4.176
TABLE	Su A	0.05 0.05 0.20 0.20 0.20 0.05 0.05 0.05	
ا تــــ	Location A	133 133 145 145 165 165 165 165 165 165 165 165 165 16	2,126
	<u>Ţaxē</u>	Crucigenia apiculata Cryptomonas ovata Cryptomonas ovata Cryptomonas ovata Cryptomonas ovata Cryptomonas ovata Cryptomonas ovata Dictyosphaerium pulchellum Dinobryon divergens Euglena polymorpha Melosira ambiqua Melosira ambiqua Melosira ambiqua Mitzschia acicularis Mitzschia acicularis Mitzschia acicularis Mitzschia acicularis Mitzschia pusilla Mitzschia pusilla Mitzschia pusilla Mitzschia deleuis Pediastrum duplex v. reficulatum Phacus orbicularis Scenedesmus acuminatus Scenedesmus denticulatus Scenedesmus denticulatus Scenedesmus denticulatus Scenedesmus denticulatus Scenedesmus denticulatus Scenedesmus denticulatus Scenedesmus dimorphus Scenedesmus dopus Scenedesmus dimorphus Scenedesmus dopus Scenedesmus dopus Scenedesmus dopus Scenedesmus dimorphus Scenedesmus dopus Scenedesmus dimorphus Scenedesmus d	lotal Biovolume
 	Time	4	
	Date		
ļ	Sampling Date	15-19 Sept	

(a) Biovolume not calculated for Locations C. D. E. and G.

2.4 ZOOPLANKTON

2.4.1 Introduction

Zooplankton samples were collected during summer 1981 to assess any changes in the zooplankton community as water passed from the Kankakee and Des Plaines rivers through the Dresden Station cooling system with the station operating in an indirect open cycle mode. The intention of the study was to sample the same water mass as it traveled through the cooling system and to note any changes in zooplankton community composition and abundance at established collection points.

2.4.2 Field and Analytical Procedures

2.4.2.1 Field Procedures

Samples for zooplankton were collected at seven locations (A, B, C, D, E, F, and G) (Figure 2.1-1). Collections were made every three hours for a 12-hour period in June, July, August, and September 1981. A total of 112 samples were collected.

A single, vertical net tow (bottom to surface) was made to collect each sample. Collections were taken with a 30 cm diameter, No. 25 mesh (64 μ m) net equipped with a collection bucket and a flowmeter to estimate the volume of water sampled. Depth (length of tow) was recorded at each location.

Zooplankton samples were narcotized immediately after collection to prevent the contraction upon fixation of rotifers and other soft-bodied organisms; this facilitated more accurate identification of these contractile forms. Narcotization was accomplished with menthol crystals. Time needed for narcotization varied with the size of the organisms encountered and other environmental factors including ambient temperature, but was kept as short as possible to minimize predation by larger plankton during narcotization.

Zooplankton samples were fixed in a final concentration of 5 percent formalin. Samples were appropriately labeled and returned to the laboratory for processing.

2.4.2.2 <u>Laboratory Procedures</u>

Before analysis, each sample was concentrated or diluted, depending on the density of zooplankton or debris in the sample. The sample was thoroughly mixed and a subsample was withdrawn and placed in a Bogorov counting chamber. The contents of the chamber were then entirely scanned while identifying and counting the organisms. Subsampling was continued until a minimum of 300 organisms were enumerated. Any organisms which were difficult to identify were removed from the counting chamber and mounted on glass slides for further examination using a Leitz SM Lux research microscope.

The effort to identify zooplankton varied depending on the organism in question. Mature copepods were identified to species, while immature copepods were identified as copepodites or nauplii. Mature cladocerans were

identified to species. Rotifers were identified to genus, except for bdelloid rotifers, which were identified to class. Final zooplankton densities were expressed as number per cubic meter of water.

2.4.2.3 Data Handling and Analysis

Data was computer processed and the resultant data tables contain zooplankton density (number/ m^3) by taxon and order for each location and for each time period within a sampling period. Percentage occurrence was calculated per location.

2.4.3 Results and Discussion

2.4.3.1 Community Composition

Ten species of Copepoda, 17 species of Cladocera and 31 species of Rotifera were collected in the Dresden Station cooling system (Table 2.4-1). Detailed data of zooplankton analyses are presented in Tables 2.4-2 through 2.4-13 and Appendix S. These species ranged from limnetic forms commonly found in channel plankton to those forms associated with a littoral habitat. Although differences in species composition between the Kankakee and Des Plaines Rivers were not apparent, there was an obvious difference in zooplankton abundance (Figure 2.4-1). Densities in the Des Plaines River averaged over six times greater than in the Kankakee River each sampling period. Species composition at the station intake and discharge locations reflected the similar communities present in the Kankakee and Des Plaines Rivers. It should be pointed out that although most of the intake water was drawn from the Kankakee River, much greater densities of zooplankton were observed at the intake (location C) than at Kankakee River Location A in all four months. The discrepancy in abundance between the two locations was probably due to a sampling artifact at Location C associated with the collection procedure used. Actual zooplankton abundance at the intake was probably lower and more comparable to abundance in the Kankakee River as was observed for phytoplankton (Section 2.3.3) and in water quality parameters (Brinker 1982). As the water mass continued through the cooling system the density of cladocerans, especially Moina and Diaphanosoma species, increased dramatically. Densities of copepods and rotifers, on the other hand, generally decreased as the cooling system was traversed.

The zooplankton community in June consisted primarily of rotifers and nauplii. The percentage of Rotifera reached 86 percent at Location D (Figure 2.4-2). Dominant rotifers included Brachionus and Keratella. Brachionus composed over 66 percent of the zooplankton collected from Location B in the Des Plaines River. Cladocerans constituted a minor portion of the community.

Densities increased in July and continued to be dominated by rotifers and immature copepods at most locations. A rise in total zooplankton abundance at Location F reflected an increase in the population of the cladoceran Moina micrura. Moina composed 90 percent of the total community at Location F in July.

In general, the peak densities of the study period were reached in August (over 52,000 organisms/m³ at Location F) (Table 2.4-2). The majority of the total zooplankton continued to be rotifers and nauplii. One exception occurred at Location G when M. micrura composed over 58 percent of the community (18,000 organisms/m³).

September samples contained the most diverse cladoceran populations with 12 different taxa enumerated. Densities decreased from August at all locations except Location G where an increase was attributed to higher numbers of Brachionus. Brachionus reached densities over 21,000 organisms/m³ at Location G.

2.4.3.2 Changes Through the Cooling Water System

Previous studies conducted in the vicinity of Dresden Station have documented distinct differences in the zooplankton assemblages of the Des Plaines and Kankakee Rivers (Czajkowski 1975, 1976a, 1976b, 1977). Species composition was similar between the two rivers in 1981 but pronounced differences in population densities occurred. The variations observed were probably attributable to a number of environmental factors including differences between the two rivers in general water quality, seasonal temperature differences, and river flow rates. Ambient river temperatures during the study period ranged from 1.6 C to 3.7 C higher in the Des Plaines than the Kankakee River (Table 2.3-17). The Des Plaines River also has slow currents, has several low dams along its course which form sluggish pools, and carries a heavy municipal and industrial waste load. All of these factors are in contrast to conditions in the Kankakee and are known to be conducive to plankton development.

Population densities and average water temperatures indicate that the primary cooling water source at time of sampling was the Kankakee River. Lower zooplankton densities were reported at Location A in the Kankakee than at Location C, the station intake, although actual differences were probably small. Condenser passage appeared to reduce the densities of nearly all taxa collected at Location D. Again, the apparent reduction in abundance at Location D may be primarily reflected in the sampling artifact at Location C. Some reduction in abundance may have occurred as a result of condenser passage, however, as evidenced in the lower zooplankton densities at Location E than at Location D in most months. The reduction may have resulted from a combination of thermal and mechanical effects during plant passage. Mean discharge temperatures in excess of 35 C were recorded during all four months of sampling. Temperature affects rates of feeding, reproduction, and life span of the Rotifera and when upper temperature limits are reached, the abundance of organisms drops sharply (Edmondson 1946). Studies of thermal releases on the ecology of the Merrimack River indicated that temperatures in excess of 37.8 C (100 F) caused significant changes in the frequency of occurrence of various groups of zooplankton. Mechanical effects of condenser passage on zooplankton have been documented at a number of power plants and may have also contributed to the reduced numbers observed at Location D.

Increased zooplankton densities in the Dresden cooling pond were observed in July, August and September. Similar increases in zooplankton densities have been observed in previous studies (Czajkowski 1975, 1976a, 1976b, 1977) and

were attributed to favorable temperatures and habitat stability within the cooling ponds. These factors were the probable influential agents again in 1981. An increase in the densities of the cladocerans <u>Diaphanosoma</u> and <u>Moina</u> especially was observed at Locations F and G. These genera flourish during periods of maximum seasonal temperatures (Hutchinson 1967) and have been observed to occur in extremely high densities in the still, backwater habitats of the Mississippi River during the late summer and early fall (Czajkowski and Carpenter 1974). Densities of <u>Brachionus</u> also increased in the cooling pond, although the increases were not as pronounced as those of the cladocerans.

The only month in which densities did not increase in the cooling pond was June when silt and detritus from earlier rains caused unfavorable conditions. Williams (1966), Eddy (1934) and Hynes (1970) found that in most streams, dense loads of silt are associated with increased stream flow and extremely low plankton populations.

The results of the study show that the reduction in zooplankton abundance during plant passage is offset by increased production in the cooling pond, resulting in greater numbers in the discharge water from the pond to the Illinois River. In some respects, the cooling pond is acting similar to a backwater habitat as pointed out earlier for the Mississippi River. The Illinois River, which receives the cooling water from the discharge canal, should not be adversely affected by reduced numbers of zooplankton in the cooling water. Past studies (Czajkowski 1975, 1976a, 1976b, 1977) have also shown a positive effect on zooplankton abundance after passage through the cooling pond. In terms of an ecological impact on the Illinois River, this increase should be a positive one because of the value of zooplankton in the food chain. An increase in the zooplankton standing crop could provide a more abundant food supply for secondary consumers in the Illinois River.

2.4.4 Summary and Conclusions

- 1. Rotifers were the most abundant zooplankton group throughout the majority of the study and reached maximum densities in August.
- 2. The dominant zooplankton taxa included <u>Brachionus</u>, <u>Keratella</u>, <u>Moina micrura</u>, <u>Diaphanosoma</u>, and immature copepods.
- Differences in population densities between the Des Plaines and Kankakee rivers appear to be related to a number of factors including water quality, temperature and river flow rates.
- 4. Increases in zooplankton densities occurred in the cooling pond which offset the decreases incurred beforehand in the cooling system. The increases were attributed to favorable temperatures and habitat. Increased numbers of the cladocerans <u>Diaphanosoma</u> and <u>Moina</u> were primarily responsible for the greater densities at Locations F and G.

2.4.5 References

- Brinker, S. 1982. Dresden Nuclear Station water quality study in the Dresden Cooling Pond during indirect open cycle operation, June 15 September 30, 1981. Unpublished.
- Czajkowski, G. P. 1975. Zooplankton. <u>in Environmental monitoring (thermal)</u> of the Des Plaines, Kankakee, and Illinois rivers near the Dresden Nuclear Power Station, January-December 1973. (IBT No. 1705). Report by Industrial BIO-TEST Laboratories, Inc. for Commonwealth Edison Company, Chicago. Chapter 4.
- . 1976a. Zooplankton. in Environmental monitoring (thermal) of the Des Plaines, Kankakee, and Illinois rivers near the Dresden Station, January-December 1974. (IBT No. 1705). Report by Industrial BIO-TEST Laboratories, Inc. for Commonwealth Edison Company, Chicago. Chapter 4.
- . 1976b. Zooplankton. <u>in</u> Environmental monitoring (thermal) of the Des Plaines, Kankakee, and Illinois rivers near the Dresden Station, January-December 1975. Report by NALCO Environmental Sciences for Commonwealth Edison Company, Chicago. Chapter 4.
- . 1977. Zooplankton. in Environmental monitoring (thermal) of the Des Plaines, Kankakee, and Illinois rivers near the Dresden Station, January-December 1976. Report by NALCO Environmental Sciences for Commonwealth Edison Company, Chicago. Chapter 4.
- and G. F. Carpenter. 1974 (unpublished). Seasonal abundance of zooplankton in the Mississippi River near Cordova, Illinois. Paper presented to the Mississippi River Research Consortium, May 17-18, 1974. 15 pp.
- Eddy, S. 1934. A study of fresh-water plankton communities. Contribution from the Zoological Laboratory of the University of Illinois. No. 448.
- Edmondson, W. T. 1946. Factors in the dynamics of rotifer populations. Ecol. Monogr. 16(4): 369-372.
- Hutchinson, G. E. 1967. A treatise on limnology. Vol. II. An introduction to lake biology and the limnoplankton. Johy Wiley α Sons, New York. 1115 pp.
- Hynes, H.B.N. 1970. The ecology of running waters. Univ. Toronto Press, Toronto. 555 pp.
- Williams, L. G. 1966. Dominant planktonic rotifers of major waterways of the United States. Limnol. Oceanogr. 11:83-91.

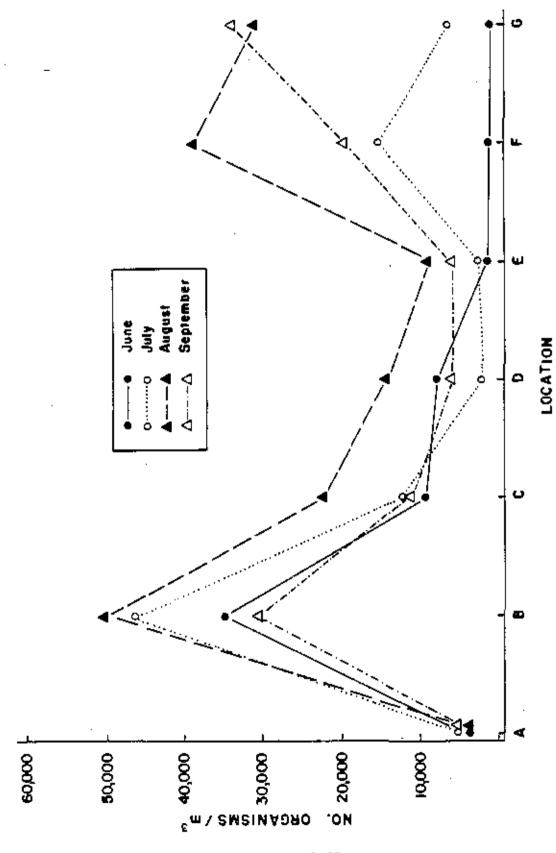


Figure 2.4-1 Mean density of total zooplankton collected from seven locations near Dresden Station, June - September 1981.

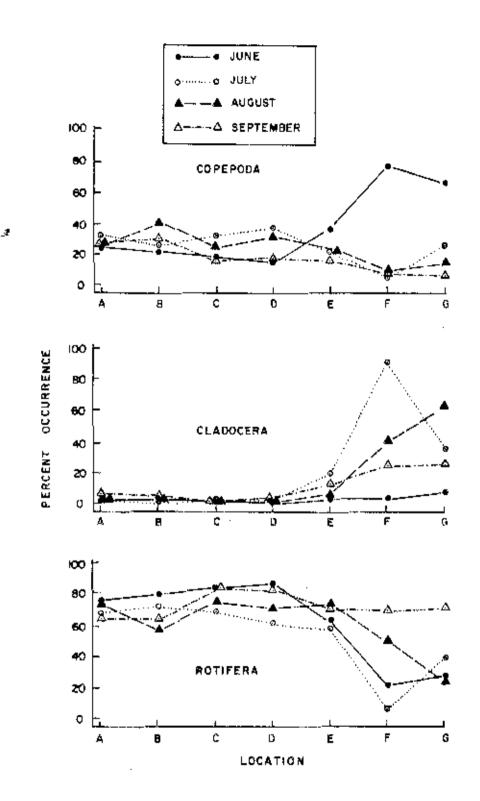


Figure 2.4-2 Mean percentage occurrence of major zooplankton groups collected from seven locations near Dresden Station, June - September 1981

TABLE 2.4-1 TAXONOMIC LIST OF ZOOPLANKTON COLLECTED IN THE DES PLAINES RIVER, KANKAKEE RIVER, AND DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981

SEPTEMBER 1981			
COPEPODA	DES PLAINES	KANKAKEE	COOLING SYSTEM
nauplii	X	Х	Х
calanoid copepodites	X	X	X
cyclopoid copepodites	χ̈́		X
	`	X X X	X
Cyclops bicuspidatus thomasi Forbes	χ̈́	Λ.	
Cyclops vernalis Fischer	A	X	Х.
Diaptomus oregonensis Lillieborg		X X	Х
Diaptomus pailidus Herrick		X	Χ .
Diaptomus siciloides Lilljeborg	X X	· X	χ
Epischura lacustris Forbes	χ	Χ	
Eucyclops agilis (Koch)	. Χ		Χ
Mesocyclops edax (Forbes)			χ
Paracyclops fimoriatus poppei (Rehberg)		X	
Tropocyclops prasinus mexicanus (Kiefer)	χ	X X	χ
Harpacticoida (Kierat)	^	0	X
·			^
CLADOCERA			
Alona circumfimbriata Megard	Х		χ
Alona spp. Baird	χ		Х
Bosmina longirostris (Muller)	X X	χ	X
<u>Bosmina longirostris</u> (Muller) <u>Ceriodaphnia lacustris</u> Birge		Χ X	.,
Ceriodaphnia quadrangula (Muller)		^	Υ
Ceriodaphnia quadrangula (Muller) Ceriodaphnia spp. Dana		χ	Χ
Chydonus sphanntous (Mullion)	Χ	^	χ̈́
Chydorus sphaericus (Muller) Daphnia parvula Fordyce Daphnia spp. (immature)	۸	v	^
Daphnia parvula Fordyce		X	
Daphnia spp. (immature)	1/	X X X	X X X X
Diaphanosoma leuchtenbergianum Fischer	X	X	X
Diaphanosoma spp. Fischer	X	Х	Х
Ilyocryptus sordidus (Lieven)	Х.		Х
Ilyocryptus spp. Sars	Х	Х	Χ
<u>Leydigia leydigi</u> Schoedler	•	χ	
Macrothrix laticornis (Jurine)			Х
Moina micrura Kurz	χ	Х	X
Scapholeberis kingi Sars	~		χ̈́
			A.
OTIFERA			
Asplanchna spp. Gosse	X	Х	X
bdelloid rotifera	X	Х	X X X X
Brachionus spp. Pallas	χ	Х	Х
Cephalodella spp. Bory de St. Vincent	χ	Х	Х
Chromogaster spo. Lauterborn			χ
Collotheca spp. Harring		Χ	X
Columella spp. Bory de St. Vincent		χ̈́	
Concepilation one Plans	χ .	χ̂	Χ
Conochiloides spp. Hlava	Λ,	Λ	^

TABLE 2.4-1(CON	ፐ. ነ
-----------------	------

11000	DES PLAINES	KANKAKEE	COULING SYSTEM
ROTIFERA (continued)			
Conochilus spp. Hlava Dicranophorus spp. Nitzsch	Χ	Х	X X
Euchlanis spp. Ehrenberg	Х	X X	Χ
Filinia spp. Bory de St. Vincent	X X	X	Х . Х
Hexarthra spp. Schmarda	Х		Х
Kellicottia spp. Ahlstrom	Х	Х	Χ
Keratella spp. Bory de St. Vincent	Х	X X	Х
Lecane spp. Nitzsch	Х	Χ	Х
Lepadella spp. Bory de St. Vincent			Х
Lophocharis spp. Ehrenberg			X X X
Monostyla spp. Ehrenberg	χ	Х	Х
Mytilina spp. Bory de St. Vincent			Х
Notholca spp. Gosse			X
<u>Platyias</u> sop. Harring	Х	Х	X
Ploesoma spp. Herrick	Х	χ	X X X
Polyarthra spp. Ehrenberg	X	X X	
Pompholyx spp. Gosse	Х	χ	Х
Rotaria spp. Scopoli	Х		
Scaridium spp. Ehrenberg			Х
Synchaeta spp. Ehrenberg	Х	Х	Х
Testudinella spp. Bory de St. Vincent		Х	X
Trichocerca spp. Lamarck	X	Х	Х
<u>Trichotria</u> spp. Bory de St. Vincent	Х	Х	Х

TABLE 2.4-2	2	MEAN DENSITY (no./m²) AND RANGE OF TOTAL ZOOPLANKTON COLLECTED FROM SEVEN LOCAFIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981	station cool	NGE OF TOTAL NG SYSTEM, J	ZOOPLANKTON INE - SEPTEMB	COLLECTED FRO	OM SEVEN LOCA	FIONS
Date		Location A	Location B	Location C	Location D	Location E	Location F	Location 6
23 Jun	Mean	3593.5	34099.5	9020.5	7742.0	1290.4	1082.3	823.9
	Range	2797-4846	27367-41588	3643-13807	5008-11228	1094-1472	461-229	474-1165
21 Jul	Nean	5154.3	46460.1	12016.9	2027.9	2675.2	15073.8	6484.1
	Range	3405-7342	38866-53048	3277-20474	1604-2 <i>3</i> 75	2573–2920	12841-17863	1606-16 <i>3</i> 79
25 Aug	Mean	3532,3	51108.3	22403.8	14190.6	8741.1	38556.9	31094.4
	Range	1815~6901	36679-74957	8741-40016	3421-36895	3154-1922D	31943-52003	23066-45589
15 Sep	Mean	5275.5	30544_7	11824.7	6100.6	5793.5	19594.6	33944.7
	Range	1702-9848	85.38~44321	7762-160 <i>3</i> 9	3696-8376	3465-7322	12373-32701	27085-40772

1770.3 1596.4 223-5082 3959.6 2230-6768 Location 6 544.2 MEAN DENSITY (no./ $\rm m^3$) AND RANGE OF TOTAL COPEPODA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1931 832.2 271-1949 3345.0 1732-5509 1227.8 751-1807 Location F 558.8 386-936 945.7 524-1193 1920.3 596-4721 Location E 464.4 333-561 600.0 491-731 4249.0 806-12175 1065.0 193-1983 1004.8 307-1861 Location D 742.1 489-975 5564.1 (440-1199) 3719.4 1781.3 960-3064 1533.5 861~2900 Location C 12016.4 6574-18723 20:05.3 17086-21200 9297.9 3170-14498 7294.2 5981-9287 Location B 868.0 524-1343 1629.0 1010-2579 1488.2 493-2530 931.9 640-156? Location A Range Mean Range Range Mean Range Mean TABLE 2.4-3 23 Jun 15 Sep 25 Aug 21 Jul Date

Location G 1508.2 218-4347 1125.5 2433.0 1463-3831 383.5 213-569 MEAN DENSITY (no./m³) AND RANGE OF MAUPLII COLLECTED FROM SEVEN LOCATIONS IN THE ORESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 761.1 251-1784 2360.7 1408-3590 996.3 496-1120 Location F 502.3 354-858 1516.1 348-3934 Location E 426.3 299-547 369.8 322-442 735.3 3616.7 665-11183 1047.9 179-1983 817.4 330-1484 Location D 620.0 378-809 4997.8 1263-10711 1482.2 778-2778 3149.9 904-4733 1363.6 792-2081 Location C 15733.7 6980.8 2471-10732 8244.3 6110-1375 5510.4 4398-7167 Location B 753.1 451-1218 1047.7 358-1768 . **12**53.1 700..2238 679.0 431.1071 ocation A Range Range Mean Range Kean Range Mean TABLE 2.4-4 25 Aug 23 Jun 15 Sep 21 Jul Date

TABLE 2.4-5	.4-5	MEAN DENSITY (no./m³) AND RANGE OF CYCLOPOID COPEDODITES COLL IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981	no./m³) AND R STATION COOL	ANGE OF CYCLO	DPOID COPEPOD JUNE - SEPTEM	MEAN DENSITY (no./m³) AND RANGE OF CYCLOPOID COPEPODITES COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981	FROM SEVEN	LOCATIONS
Date		Location A	Location B	Location C	Location D	Location E	Location F	Location G
23 Jun	Mean	90.0	1592.7	51.5	16.0	29.7	64.1	157.9
	Range	23-185	725-1984	83-123	9-55	11-54	12-150	106-214
21. Jul	Mean	. 239.8	3305.9	344.5	77.2	173.2	56.5	81.4
	Range	145-340	2292-4681	84.495	45-144	87-317	32-78	5-125
25 Aug	Mean	195.9	3296.5	47£.8	- 409.0	334.9	953.0	1204.8
	Range	113-⊄16	2854-3997	152-1078	94-992	90518	325-1857	557-2554
is Sep	Rean	212.8	1078.6	158,1	78.0	117.1	282.2	422.6
	Range	57~366	225-1692	49-289	31-149	55-200	71-632	121-640

19216.4 15150-23369 8527.0 6062~11015 2358.9 1241-2869 Location G 53.5 27-75 MEAN DENSITY (no./m³) AND RANGE OF TOTAL CLADOCERA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEW STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 13623.9 11821-16960 4949.2 1679-10659 15906.2 11452-22811 Location F 22.3 5-64 470.7 141-1057 779.4 182-1564 Location E 513.9 49-730 13.5 0-19 Location D 111.7 21-176 8.0 0~32 20.4 7-39 48.8 0-90 Location C 230.0 101-605 170.5 101-202 167.6 120-231 23.60-47857.7 140-1560 Location B 1029.3 705-1297 1276.1 474-1997 70.3 101-180Location A 59.5 28-103 73.0 285.5 62-549 80.9 32-101 Mean Range Mean Range Mean Range Mean Range TABLE 2.4-6 25 Aug 23 Jun 15 Sep 21 Jul Date

4/3.1 0-10**45** Location 6 1644.1 320-4247 9.3 0-235 2.3 0~9 MEAN DENSITY (no./m³) AND RANGE OF DIAPHANOSOMA SPECIES COLLECTED AT SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 Location F 325.9 126-739 390.2 80-632 22.6 0-64 Location E 87.8 0-262 24.3 0-3.35 72.7 0-990 2.0 0-8 Location D 4.2 0-17 12.7 0~22 00 Location C 92.4 0-440 $\substack{26.3\\0.101}$ 25.9 0-47 Lucation 9 143.8 0-347 24.8 0-99 15,4 0-73 Location A 2.4 0-9 11.2 9-78 $\frac{14.8}{0-30}$ Mean Range Nean Range Mean Range Mean Range TABLE 2,4-7 23 Jun 25 Aug 15 Sep 21 Jul Date

18252.7 14357-22602 2276.3 1222-2815 Location G 5159.6 3521-8261 12.0 0-18 MEAN DENSITY (no./m3) AND RANGE OF MOINA MICRURA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEW STATION COOLING SYSTEM, JUNE - SEPTEMBER 1931 13578.6 11821-16815 15254.4 10957-22179 4084.2 960-9304 Location F 20.3 4-64 Location E 333.4 33-563 373.9 131~899 27.2 0-55 00 $\frac{5.1}{0-24}$ $^{2.7}_{0-11}$ 00 Location C 27.0 0.-55 23,2 0-67 00 Location B 451.5 0.867 57.2 0-130 24.5 0-73 00 Location A 30.5 0-62 26.0 9.41 42.7 5-86 00 Nean Range Mean Range Nean Range Nean Range TABLE 2.4-8 23 Jun 25 Aug 15 Sep 21 301 Date

7918,4 4573-15451 23547.4 18596-29001 2529.9 142~8717 Location G 226.2 128-310 MEAN DENSITY (no./m 3) AND RANGE OF TOTAL ROTIFERA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 19305.6 14228-25148 13418.5 7773-202**35** 891.1 547-1521 Location F 227.6 149-302 6350.1 2147-14162 1561,4 1368-1804 4068.5 2749-5141 Location E 812.4 697-911 9900.7 2560-23629 4984.1 3065-6338 6669.D 815-7212 1265.3 1076-1449 Location D 16669.2 7124-27823 8067.5 2128-14145 9875.8 6134~14744 7475.3 2735-10907 Location C 33596.0 29371-37494 29573.6 18888-52154 27535.0 21396-32201 19970.7 4893-28432 Location B 3444, 3 2274-5349 2527.3 1083-5195 2665.9 2061-3475 3501.9 1147-6768 Location A Mean Range Mean Range Mean Range Mean Range TABLE 2,4-9 23 Jun 15 Sep Date o 21 Jul \$2

TABLE 2.4-10 MEAN DENSITY (no./m³) AND RANGE OF BOELLOID ROTIFERA COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981

Date		Location A	Location B	Location C	Location D	<u>Location E</u>	Location F	Location G
23 Jun	Mean	83.0	1900.7	352.2	619.2	104.5	20.4	8.6
	Range	0-232	725-4 34 1	47-637	143-962	18~202	12-38	4-14
21 Ju?	Mean	260 -9	3047.7	509 .6	222.7	187 . 8	69.3	176.4
	Range	65~462	368-5547	169 -991	181-247	26- 3 01	0-129	33-586
25 Aug	Mean	46.4	600.5	406.3	429 .1	46.2	30.9	96.0
	Range	9-92	198-982	76-909	44 -10 82	0-107	0~62	02 <i>3</i> 9
15 Sep	Mean	106.1	1216.9	432.5	155.3	94.1	53.6	16.0
	Range	21-213	275-2230	240-521	29277	45-127	0-80	0~6 4

TABLE 2.4-11	4-11	MEAN DENSITY (no./m²) AND RANGE OF BRACHIONUS SPP. COLLECTED FROM SEVEN LOCATIONS IN INE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981	no,/m²) AND R	ANGE OF BRACH SYSTEM, JUNE	TOMUS SPP. C(- SEPTEMBER	OLLECTED FROM	SEVEN LOCATI	ONS IN
Date		Location A	Location B	Location C	Location D	Location E	location F	Location G
3 Jun	Mean Range	1795.7	23370.0 i8929-26762	529.7 343-728	737.9 45-1311	220.4 283-373	140.2 100-208	137.3 84-186
1 Jul	Mean Range	2654,3 1467-4449	29110.1 251 <i>37</i> -306 3 9	3/27.5 1123-6935	565.5 419-751	1118.0 1028-1211	460.6 228–780	2091.1 62-7584
5 Aug	Mean Range	2275.3 931-4858	27973.0 17478-47613	14037.7 4244-25330	82 30.7 1318-20743	6092.9 1911-13825	19091.7 14104-24896	7592.7 4460-15068
5 Sep	Mean Range	1989.5 566-4116	14926,9 3395-20906	5342.1	3093.9 1863-4226	3111.5	11520.5 7346~17254	21122.5 16979-25968

Location G 50.4 0-162 $\frac{12.0}{0-23}$ 0 0 MEAN DENSITY (no./m 3) AND RANGE OF KERATELLA SPP. COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1931 Location F 39.0 0-156 10.8 4-25 00 Location E 118,9 26-182 57.8 25.96 107.7 45-182 $^{2.5}_{0.10}$ Location D 2113.9 457-2898 133.3 74-187 417.3 153-615 153.5 0-451 3657.5 1297-5187 1535.2 566-2274 652.9 71~1503 Location C 149.5 25-303 1109.1 544-1*4*60 2574,3 924-3345 Location B 178.3 0-389 298.5 0-693 Location A 271.1 185-429 95.6 78-114 203.3 26-457 18.5 0-40 Range Nean Range Range Mean Range Mean Mean TABLE 2.4-12 25 Aug 23 Jun 15 Sep 21 ժահ Date

1976.1 1213-2548 Location G 1.5 00 MEAN DENSITY (no./m3) AND RANGE OF SYNCHAETA SPP, COLLECTED FROM SEVEN LOCATIONS IN THE DRESDEN STATION COOLING SYSTEM, JUNE - SEPTEMBER 1981 1574.8 285-2620 Location F 0.8 0.3 8.0 32.0 0 Location E 54.7 22-112 339.3 273.407 39.0 8-100 $\frac{6.2}{0-16}$ 1940.1 9-2566 Location D 389-902 614.9 478-806 66.7 29-107 1542.3 212-2614 1602.1 876-3032 717.1 51-1.486 1805.3 755-2967 Location C 733.6 0-1399 Location B 233.0 234.5 0-365 351.5 25-526 324.5 47-1006 Location A 208.3 93-332 128.9 78-235 19.4 0-40 Range Range Maan Range Mean Range Mean TABLE 2.4-13 15 Sep 23 Jun 21 Jul 25 Aug ata |

3.0 RIVER SYSTEM STUDIES

3.1 STUDY AREA DESCRIPTION

The Dresden Nuclear Station is located at River Mile 273 at the junction of the Des Plaines and Kankakee rivers (Figure 3.1-1). These two rivers form the upstream origin of the Illinois River (Dresden Island Pool). The station's cooling water intake is situated on the Kankakee River from which the greatest percentage of cooling water is drawn. A smaller percentage of cooling water is drawn from the Des Plaines River; the amount varies depending upon water flow in each of the two rivers. The station's discharge is located along the south shoreline of Dresden Island Pool. Because of temperature and water quality differences between the Kankakee and Des Plaines Rivers (CECo 1977), the characteristics of Dresden Island Pool are those of a two-river system, the Kankakee River on the south side and the Des Plaines on the north side of the Illinois River. Substantial mixing does not occur until after the water flows over Dresden Island Dam.

The study area for the river system studies encompassed the lower extremities of the Des Plaines River (Location 1) and the Kankakee River (Location 2), Dresden Island Pool of the Illinois River (Locations 5, 6, 7, 9 and 10), and the upstream extremity of Marseilles Pool below Dresden Island Lock and Dam (Locations 11 through 16) (Figure 3.1-1). Locations in Dresden Island Pool were established upstream from the station discharge (Location 5), in the lower portion of Units 2/3 discharge canal (Location 6), downstream from Dresden Island Lock and Dam on both sides of Dresden Island (Locations 11, 12, 13 and 16) and further downstream near the Elgin, Joliet, and Eastern railroad bridge (Locations 14 and 15). A detailed description of the position of each location is presented in Table 3.1-1.

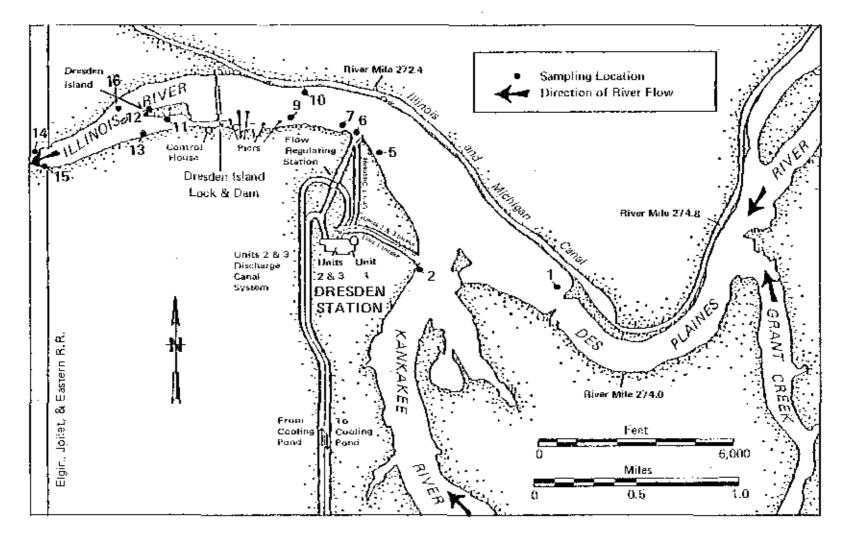


Figure 3.1-1 Sampling locations in the Kankakee, Des Plaines and Illinois Rivers near the Dresden Station.

100 8

TABLE 3.1-1 DESCRIPTION OF SAMPLING LOCATIONS FOR MACROINVERTEBRATES AND FISH.

Location	Description
Ţ	On the north shore of the Des Plaines River at RM 273.4.
2	Immediately upstream of the Dresden Units 1, 2 and 3 floating log boom on the Kankakee River.
5	On the south shore of the Illinois River upstream of Dresden Units 1, 2 and 3 discharge canals at RM 272.5.
6	On the south shore of the Illinois River in the immediate area of the Dresden Station discharge at RM 272.3.
7	On the south shore of the Illinois River approximately 150 meters downstream of the Dresden Station discharge at RM 272.1.
9	On the south shore of the Illinois River approximately 800 meters downstream of the Dresden Station discharge at RM 271.7.
10	On the north shore of the Illinois River approximately 500 meters downstream of the Dresden Station discharge at RM 272.0.
11	Downstream of Dresden Island Lock and Dam on the south shore of the island below the lock at RM 271.1.
12	Downstream of Dresden Island Lock and Dam on the north shore of the island below the dam at RM 271.0.
13	Downstream of Dresden Island Lock and Dam on the south shore of the Illinois River at RM 270.8.
14	Downstream of Dresden Island Lock and Dam on the north shore of the Illinois River at RM 270.5.
15	Downstream of Location 13 on the south shore of the Illinois River at RM 270.5.
16	Downstream of Location 12 on the north shore of the Illinois River across from the small island at RM 270.9.

3.2 MACROINVERTEBRATES

3.2.1 Introduction

The aquatic macroinvertebrate community of the Illinois River near Bresden Station was sampled monthly from June through September 1981. The primary objective was to determine the effects of indirect open cycle operation of the station on the benthic community. Primary considerations were macroinvertebrate composition, absolute abundance and relative abundance.

Concurrent with the macroinvertebrate sampling, sediment samples were collected to determine any effects of the indirect open cycle operation on particle size distribution and total organic carbon content of the sediment near the Dresden Station.

3.2.2 Field and Analytical Procedures

3.2.2.1 Field Procedures

Benthic macroinvertebrate samples were collected on 23 June, 21 July, 25 August and 15 September 1981 from Locations 5 (upstream from discharge canals), 7 (150 m downstream from discharge canals) and 9 (800 m downstream from discharge canals) in the Illinois River (Figure 3.1-1 and Table 3.1-1). Two replicate samples for benthic macroinvertebrates were collected at each sampling location utilizing a standard Ponar grab sampler (area sampled = 530 sq. cm). The substrate in each replicate was visually categorized at the time of collection. Samples were placed in plastic containers, labeled and preserved with a 10 percent formalin solution containing rose bengal dye.

3.2.2.2 Laboratory Procedures

In the laboratory, the samples were sieved on a U.S. Standard No. 30 mesh (595 μm aperture) screen. All organisms were sorted from the sieve residue and enumerated under a binocular dissection microscope at 10 to 70X magnification. Occasionally, large amounts of organic material in the sieve residue and/or large numbers of oligochaetes necessitated subsampling. Subsampling was done in accordance with U.S. EPA methods (Weber 1973). Identification of all organisms, except oligochaetes and chironomids was made during the separation process. Oligochaete and Chironomidae were mounted in a non-resinous clearing media on glass slides and were identified using a binocular compound microscope at magnifications of 40 to 1000X. Density of all organisms was reported in numbers per meter square (No./ m^2). All identifications were made to the lowest practicable taxon, usually genus or species.

Concurrent with the collection of the benthic macroinvertebrate samples, two replicate grab samples were taken at each of the three locations for analysis of particle size and total organic carbon content. Samples were placed in labeled containers, frozen and transported to the laboratory. Sediment particle size distribution analysis (PSA) was performed according to Method P422-63 of the American Society for Testing and Materials (1973). Six size classes were differentiated and reported as percentage by weight. Total

organic carbon (TOC) was determined by a combustion-infrared method (Menzel and Vaccaro 1964) utilizing an Oceanography International ampule-type analyzer. Data was reported as mg/kg of sediment based on dry weight.

3.2.3 Results and Discussion

3.2.3.1 Sediment Characterization

Sediment of the Illinois River in the vicinity of the Dresden Station was principally silt and fine sand with some clay. Percentages of the various substrate components, however, varied considerably among the locations. The substrate at Location 5 was generally composed of greater than 55 percent silt mixed with clay and fine sand. The greatest percentage of silt and clay occurred at this location throughout the sampling period. Total organic carbon values were also generally highest at Location 5 ranging from 19,004 to 34,500 mg/kg (Tables 3.2-1 through 3.2-4). Little change in the composition of the substrate was observed at this location during the study period.

In June, the substrate at Location 7 was very similar to that observed at Location 5. In the next three months, however, this location contained predominantly fine sand substrates with lesser fractions of silt and medium sand. Location 7, compared to the other locations, had the greatest concentration of fine sand during all collection periods except June. The lowest TOC values were also reported from Location 7 throughout the sampling periods. Visual observations of the substrate in August and September at Location 7 revealed a patchy distribution of a variety of substrates. The substrates, possibly because of the current from the discharge, were a mixture of pockets of silt and clay interspersed with sandy ridges. Depth contours at this location were also quite variable in August and September.

Fine sand was also the major component of the substrate at Location 9. Concentrations of silt and clay were, however, higher at this location than at Location 7. Total organic carbon values were generally very similar to those observed at location 5.

3.2.3.2 Community Composition

Twenty-eight benthic macroinvertebrate taxa were collected from the Illinois River near the Dresden Station from June to September 1981 (Table 3.2-5). Oligochaetes accounted for the largest number of taxa and greatest percentage of the benthic assemblage. The Tubificidae, represented by 13 species, constituted the major portion of the Oligochaeta in the Illinois River. Dominant tubificids were Limnodrilus hoffmeisteri, L. maumeensis, L. cervix (variant) and Aulodrilus pigueti. Many unidentifiable immature tubificids were also collected in the study. These immatures were separated into two groups: "unidentifiable immatures with capilliform chaetae" and "unidentifiable immatures without capilliform chaetae." Immature Ilyodrilus templetoni constituted the immatures with capilliforms. Limnodrilus claparedeianus, L. cervix, L. cervix (variant), L. hoffmeisteri, and L. maumeensis composed the immatures without capilliform chaetae. Chironomidae were the only insects collected. Procladius sp. and Cryptochironomus sp. were the most abundant of

the nine taxa of chironomids encountered near the Dresden Station. Corbicula fluminea, the Asiatic clam, was the only mollusk collected from the Illinois River.

The benthic assemblage encountered near the Dresden Station was indicative of an organically enriched environment. The dominant tubificid, L. hoffmeisteri, is a cosmopolitan species tolerant of organic and inorganic pollution (Brinkhurst 1965). The two other commonly occurring Limnodrilus species, L. maumeensis and L. cervix (variant), have been reported by Hiltunen (1969) as frequently abundant in polluted harbors and river mouths. The chironomids, Procladius sp. and Cryptochironomus sp., are free-living carnivores that feed on protozoa, microcrustaceans and oligochaetes. These two taxa are frequently associated with large concentrations of oligochaetes and are also tolerant of organic enrichment.

3.2.3.3 Spatial and Temporal Distribution

Community composition was very similar at each of the three locations throughout the summer. The same species were generally dominant at each location during each of the four sampling periods. However, no consistent temporal variations in densities were observed in the macroinvertebrate community. Peak abundances of the major groups and species often occurred during different months for each location. Macroinvertebrate densities were greatest at location 9 on three of the four sampling dates (Table 3.2-6). The total mean density at Location 9 was also over twice as great as densities recorded at Locations 5 or 7.

Unidentified immature tubificids without capilliform chaetae were the most abundant group of organisms at all locations. This group was much more abundant at location 9 and accounted for the greater macroinvertebrate densities at this location than at other locations. These unidentified immature tubificids composed over 55 percent of the benthos in each collection period at Location 9 with peak densities of $9.828/m^2$ occurring in July (Tables 3.2-7 through 3.2-11). At Locations 5 and 7, this group composed from 24 to 50 percent of the benthic fauna. Greatest densities of immature tubificids without capilliform chaetae at location 5 $(2.372.0/m^2)$ occurred in September and at Location 7 greatest numbers occurred in June. The fewest immature tubificids without capilliforms at Locations 5 and 9 were observed in August, and at Location 7, numbers were smallest in July.

The greatest densities of immature tubificids with capilliform chaetae was reported at Location 9 during each sampling period. The lowest densities of immatures with capilliforms were observed at Location 7. The greatest number of immatures with capilliform chaetae was observed at each location in June, averaging 293.0, 264.6 and $396.9/\text{m}^2$ at Locations 5, 7 and 9, respectively (Table 3.2-12). The smallest number of immature tubificids with capilliform chaetae occurred in August at all locations.

Limnodrilus hoffmeisteri was the most abundant mature tubificid collected from the Illinois River. Total mean densities were greatest at Location 9; however, peak monthly densities were recorded from a different location in each collection month. The greatest monthly densities were observed at

Location 7 in June $(982.8/m^2)$ and at Location 9 in September $(869.4/m^2)$ (Table 3.2-13). In July and September, numbers of L. hoffmeisteri were much lower near the discharge (Location 7) than at either Location 5 or 9.

Limnodrilus maumeensis was most frequently encountered at Location 5. In June, July and August, it was the second most abundant tubificid collected at this location. L. maumeensis was not recorded from Location 9 in either June or July; however, in September the greatest densities of this species occurred at Location 9 (Table 3.2-14). This organism apparently prefers the greater concentrations of clay and silt that occurred at Location 5, and which were also sampled in the September at Location 9. Densities of L. cervix (variant) were greatest at Location 9 during three of the four sampling periods. Greatest densities at Location 5 and 9 occurred in July (113.4 and 302.4/m², respectively). Greatest densities of this taxon at Location 7 occurred in September (189.0/m²) (Table 3.2-15).

On an annual basis, Aulodrilus pigueti was most abundant at location 9 (Table 3.2-16). Extremely large numbers of this species $(1,587.6/m^2)$ occurred in September. Aulodrilus pigueti typically undergoes an annual period of asexual budding and fragmentation. This assexual cycle probably accounted for the peaks in abundance at Location 5 and 9 in September.

Chironomidae, represented primarily by Procladius sp., were most abundant at Location 5 during all sampling periods except July (Table 3.2-17). In July, 567.0/m² Procladius sp. were collected at Location 9. This represented the greatest density of Procladius sp. reported from any location (Table 3.2-8). Cryptochironomus sp., the second most abundant midge, was also generally most abundant at Location 5. No chironomids were collected in either June or September from Location 7 and very few occurred in either July or August.

Several young Corbicula fluminea were encountered immediately downstream of the Dresden Station discharge at Location 7 (Table 3.2-18). Very few were collected at either Locations 5 or 9. Apparently, this taxon prefers the silty sand substrate present at Location 7 versus the higher concentrations of clay and silt that were present at Locations 5 and 9. The concentrations of young specimens could possibly have originated from a resident population in the discharge canal. Numerous specimens of adult C. fluminea shells were observed along the banks of the discharge canal throughout the study. The variations in abundance of this species at Location 7 may have been related to the unstable and variable substrates of this collection site.

3.2.3.4 Changes in Community Structure

The benthic macroinvertebrate community in the Illinois River near Dresden Station has remained relatively consistent from 1972 through 1976 to the present study. The number of taxa observed in the present study, however, was much smaller than reported from earlier studies. This was explained by the fact that the Kankakee River (Location 2) was not sampled in 1981 and sampling in this study was done only during the summer months instead of throughout the year. Roubik (1975a, 1976a, 1976b and 1977) reported Limnodrilus hoffmeisteri as the dominant tubificid in 1973, 1974, 1975 and 1976 and Ilmnodrilus maumeensis, L. cervix, L. udekemianus and Aulodrilus

pigueti as also abundant. These taxa were also the predominant oligochaetes in the present study. Total numbers of tubificids were generally slightly higher in 1981 than spring and summer densities reported by Roubik (1975a, 1976a, 1976b and 1977) in previous studies. Brice (1978), in reviewing the 1972 through 1976 data, noted that during direct or indirect open cycle operation, tubificid densities were significantly greater at Location 7 than at Location 5. This trend was not observed in the present study.

Procladius sp. and Cryptochironomus sp. were the dominant chironomids reported in both the present study and by Roubik (1975a, 1976a, 1976b and 1977). Densities of Corbicula fluminea (reported as C. manilensis by Roubik) were much greater in the present study than in previous studies. The maximum densities of Corbicula in 1981 were 945/m² at Location 7 in August. The largest numbers reported by Roubik (1976b and 1977) were 14/m² at Location 7 in November 1975 and 56/m² at the same location in December 1976.

3.2.4 Summary and Conclusions

- Sediments at the three Illinois River collection locations were predominantly fine sand, silt and clay. Greatest percentages of silt and total organic carbon (TOC) generally occurred at Location 5, upstream of the discharge. Location 7, immediately downstream of the discharge, was primarily sand with small relative proportions of TOC. Location 9 was also primarily fine sand but contained TOC concentrations comparable to those of Location 5.
- The macroinvertebrate community was indicative of a highly enriched to grossly polluted river. Saprophilous Tubificidae were the predominant taxa collected. Few insects or molluscs were encountered.
- 3. Spatial and seasonal variations in the abundance of the predominant taxa reflected natural seasonal reproductive cycles and the effects of minor variations in substrates between locations and months.
- 4. Young individuals of <u>Corbicula</u> fluminea were consistently collected at Location 7. Numerous adult <u>C.</u> fluminea were observed in the discharge canal and were likely the source of the young individuals collected at Location 7.
- 5. The macroinvertebrate community has remained quite constant since 1972. Studies conducted in 1972 through 1976 reported a similar assemblage, predominated by the same taxa reported herein as dominant in 1981.
- 6. Tubificid abundance did not increase a short distance downstream from the discharge (Location 7) during indirect open cycle operation in 1981 as was reported in earlier studies.

3.2.5 References

ASTM. 1973. Annual Book of Standards. Part II: Bituminous materials for highway construction, waterproofing, and roofing; soil and rock; peats, mosses and humus; skid resistance. Philadelphia, Pennsylvania. 1080 pp.

- Brice, J.R. 1978. Macroinvertebrates in Environmental Studies of the Des Plaines, Kankakee and Illinois Rivers near the Dresden Station, January through December 1977. Report by Hazleton Environmental Sciences to Commonwealth Edison Company, Chicago, Illinois. Chapter 4. 131 pp.
- Brinkhurst, R.O. 1965. The biology of the Tubificidae with special reference to pollution. Proc. Third Seminar 1962. Biological Problems in Water Pollution. Water Supply and Pollution Control Series. U.S. Public Health Serv. 57-65.
- Hiltunen, J.K. 1969. Distribution of oligochaetes in western Lake Erie, 1961. Limnol. Oceanogr. 14(2):260-264.
- Menzel, D.W. and R.F. Vaccaro. 1964. Re-measurement of dissolved organic particulate carbon in sea water. Limnol. Oceanogr. 9:138-142.
- Roubik, J.C. 1975. Benthos in R.P. Markel, ed., Environmental monitoring (thermal) of the Des Plaines, Kankakee and Illinois River near the Dresden Nuclear Power Station, January December 1973. (IBT No. 1705). Report by Industrial BIO-TEST Laboratories, Inc., to Commonwealth Edison Company, Chicago, Illinois. Chapter 6. 18 pp.
- . 1976a. Benthos Studies in Environmental monitoring (thermal) of the Des Plaines, Kankakee and Illinois rivers near the Dresden Nuclear Power Station, January December 1974. (IBT No. 1705). Report by Industrial BIO-TEST Laboratories, Inc., to Commonwealth Edison Company, Chicago, Illinois. Chapter 6. 48 pp.
- . 1976b. Benthos Studies in Environmental monitoring (thermal) of the Des Plaines, Kankakee and Illinois rivers near the Dresden Nuclear Power Station, January December 1975. (IBT No. 1705). Report by NALCO Environmental Sciences to Commonwealth Edison Company, Chicago, Illinois. Chapter 6.
- . 1977. Macroinvertebrate Studies in Environmental monitoring (thermal) of the Des Plaines, Kankakee and Illinois rivers near Dresden Station, January December 1976. (NALCO Environmental Sciences No. 550101705). Report by NALCO Environmental Sciences to Commonwealth Edison Company, Chicago, Illinois. Chapter 6.
- Weher, C.I. 1973. Biological field and laboratory methods for measuring the quality of surface waters and effluents. USEPA, EMSL. EPA-6704-73-001.

TABLE 3.2-1 SUMMARY OF TOTAL ORGANIC CARBON ANALYSIS (TOC) AND PARTICLE SIZE ANALYSIS (PSA) OF SEDIMENT SAMPLES COLLECTED FROM THE ILLINOIS RIVER NEAR THE DRESDEN POWER STATION, 23 JUNE 1981

				Loca	ation		
Parameter	Units	5A	5B	7A	<u> 78</u>	9A	9B
TOC	mg/kg ^ð	30,900	27,400	25,300	24,900	41,400	.10,500
C1 ay	_% b	26.9	30.5	27.6	25.1	18.7	3.9
Silt	%	55.9	59.9	56.2	38.7	27.2	6.7
Fine Sand	%	16.2	8.7	13.4	34.1	45.7	82.7
Medium Sand	%	8.0	0.8	2.1	1.6	5.9	6.0
Coarse Sand	%	0.1	0.1	0.8	0.1	1.5	0.7
Gravel	%	0	0	Ō	0.3	1.0	0

⁽a) Data are reported in mg/kg of sediment based on dry weight.

⁽b) Data are reported as percentage by weight.

TABLE 3.2-2 SUMMARY OF TOTAL ORGANIC CARBON ANALYSIS (TOC) AND PARTICLE SIZE ANALYSIS (PSA) OF SEDIMENT SAMPLES COLLECTED FROM THE ILLINOIS RIVER NEAR THE DRESDEN POWER STATION, 21 JULY 1981

				Loca	ation		
<u>Parameter</u>	Units	5A	5B	7.A	7B	9A	98
TOC	mg/kg ^a	33800	34,500	2430	2810	12300	34600
Clay	%p	33.0	68.4	1.6	0.8	16.1	56.6
Silt	Z	44.6	24.7	2.9	5.2	36.4	24.1
Fine Sand	78	20.9	2.7	84.7	83.3	42.6	17.7
Medium Sand	eg.	1.4	4.2	10.8	4.5	4.6	1.5
Coarse Sand	%	0.1	0	0	6.1	0.3	0
Gravel	œ æ	0	0	0	0	0	0

⁽a) Data are reported in mg/kg of sediment based on dry weight.(b) Data are reported as percentage by weight.

TABLE 3.2-3 SUMMARY OF TOTAL ORGANIC CARBON ANALYSIS (TOC) AND PARTICLE SIZE ANALYSIS (PSA) OF SEDIMENT SAMPLES COLLECTED FROM THE ILLINOIS RIVER NEAR THE DRESDEN POWER STATION, 25 AUGUST 1981

				Loca	tion		
Parameter	Units	5'A'	5B	7A	7B	9A	9B
TOC	mg∕kg ^a	19,004	19,782	7,670	8,861	20,824	8,913
Clay	%p	28.2	14.3	5.1	5.8	9.7	2.9
Silt	%	58.8	73.3	21.8	21.9	20.7	7.6
Fine Sand	ov Xo	12.7	9.4	68.2	56.8	52.5	73.0
Medium Sand	32	0.3	3.0	4.7	15.3	13.7	13.5
Coarse Sand	다	0	0	0.2	0.2	3.4	1.9
Gravel	ž	0	0	0	0	0	1.1

⁽a) Data are reported in mg/kg of sediment based on dry weight.(b) Data are reported as percentage by weight.

SUMMARY OF TOTAL ORGANIC CARBON ANALYSIS (TOC) AND PARTICLE SIZE ANALYSIS (PSA) OF SEDIMENT SAMPLES TABLE 3.2-4 COLLECTED FROM THE ILLINOIS RIVER NEAR THE DRESDEN POWER STATION, 15 SEPTEMBER 1981

					ation		
Parameter	<u>Units</u>	5A	5B	7A'''_			9B
TOC	mg/kg ^a	28,981	29,630	9,629	11,292	25,186	29,724
Clay	_₹ b	32.1	27.2	5.3	7.9	20.4	30.7
Silt	75	36.1	65.5	12.2	26.1	35.1	34.9
Fine Sand	砻	10.5	6.9	79.4	54.7	39.2	24.5
Medium Sand	%	1.3	0.4	3.0	8.6	4.5	8.4
Coarse Sand	%	-	**	0.1	0.2	0.4	1.5
Gravel	%	-	-	-	2.5	0.4	-

⁽a) Data are reported in mg/kg of sediment based on dry weight.(b) Data are reported as percentage by weight.

TABLE 3.2-5 TAXONOMIC LIST OF BENTHIC MACROINVERTEBRATES ENCOUNTERED IN THE ILLINOIS RIVER NEAR THE DRESDEN STATION, JUNE - SEPTEMBER 1981

```
Nema toda
Annelida
  Oligochaeta
    Plesiopora
      Enchytraeidae
      Naididae
        Dero sp.
                   ûken
        Slavina appendiculata
                                D'Ukekem
        Wapsa mobilis
                       (Liang)
      Tubificidae
        Aulodrilus pigueti
                             Kowalewski
        Bothrioneurum vejdovskyanum
        Branchiura sowerbyi
                              Beddard
        Ilyodrilus templetoni
                                (Southern)
                             Brinkhurst
        Limnodrilus cervix
        L. cervix variant
        L. claparedianus
L. hoffmeisteri
                           Ratzel
                          Claparede
                        Brinkhurst and Cook
        L. maumeensis
        L. udekemianus
                         Claparede
                                               Brinkhurst and Cook
        Peloscolex multisetosus longidentus
        P. m. multisetosus (Smith)
        Tubifex kessleri americanus Brinkhurst and Cook
Arthropoda
  Insecta
    Diptera
      Chironomidae
       Chironominae
        Cryptochironomus sp.
                               Kieffer
        Polypedilum scalaenum type (Schrank)
        P. simulans type (Schrank)
        Pseudochironomus sp.
                               Malloch
       Tanypodinae
        Coelotanypus sp.
                           Kieffer
        Procladius sp.
                         Skuse
        Tanypus stellatus Coquillett
       Orthocladiinae
        Cricotopus sylvestris group
                                      Sensu Hirvenoja
        Nanocladius sp. Kieffer
Mollusca
  Pelecypoda
    Heterodonta
      Corbiculidae
        Corbicula fluminea
                             Muller
```

TABLE 3.2-6 MEAN DENSITY (NO./M²) AND RANGE FOR TOTAL BENTHOS AT THREE LOCATIONS NEAR THE DRESDEN STATION, JUNE-SEPTEMBER 1981

	Lo	cation 5	Loc	cation 7	Lo	cation 9
Date	Mean Density	Range	Mean Density	Range	Mean Density	Range
23 June	2920.3	2816.1-3024.0	4876.2	3704.4-6040.0	4999.7	3704.4-6293.7
21 July:	3572.4	3534.2-3609.9	1030.2	774.9~1285.9	11869.2	9374.4-14364.0
25 August	1030.0	850.5-1209.6	2277.4	2192.4-2362.5	1171.8	756.0-1587.6
15 September	3685,5	3042.9-4328.1	1544.3	37.8-3250.8	8353.8	7560.0-9147.6
MEAN	2802.0		2457.0		6598.6	

NUMBER PER REPLICATE, MAN NUMBER PER METER SQUARE AND PERCENT OCCURRENCE OF BENTHIC MACRO-INVERTEBRATES AT THREE LOCATIONS NEAR THE DRESDEN STATION, 23 JUNE 1931. TABLE 3.2-7

		Locat	ion 5			Location 7	clon 7			Location 9	Hon 9	
Гахоп	No./Rep	Mo./Replicate Bear	Meten no - //02		No./Re	Nicate B	Mean no./m ²	34	No./Rep A) icate	Hean no./m ²	3-2
Nema Coda				!		•				:		
Unidentified Newstoda	÷	ı			면	00	113,4	2.3	ı	•		
orrgothaeta Enchytracidae												
Unidentified Enchytraefdae	•	1	9-6	0.3	ı	ı			_	ı	9.6	0.2
Maintage Slavina appendiculata	ı				•	•			1	-	9.6	0.2
Tubificidae	ş	-	0 000	6	14	2	3 830		9		0 300	9
Unidentified immature with	₹	=	a	10.0	9	7	0.402	۲. د	ŝ	7	9.000	F
Unidentified jumeture without	22	74	1379.7	47.3	212	96	2910,6	59.7	243	142	3638.3	72.0
cap, chaetae		,	į				!				1	,
Aulodrilus pigueti	9	~	170.1	8,8	15	ı	1(3,4	2.3	9		۲. ۲.	- ;
Bothrioneurum vejdovskyanum					, «		:		ı	-	3,0	0.2
Franchiura sowerby					⇒	ı	75.6	ر ج		, .		,
Liyodrilus temple coni	ı	ı			₹		37.8	8.0		-	37.8	
Limboli IIIs Cervix	, `	. •	:		, 1	. ;	;	;	<u>:</u>	1 6	0,0	\ . 0 ·
L. Cervix Variant	-	-	14/13	<u>-</u>	-	77	151.2	- -	-	<u> </u>	1.072	n n
F bo (pole tor.	- 0 0	, \$	5100.3	1.1	ı Ç	. 22	9 600	20.2	ئ, ا	٠. ټ	463	• •
	58	3 %	444 2	6.6	àœ	2 9	276.8	4.6	ξ.	3 ,		
VIII 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ì ,	i		1	٠,	٠,	2	2	,		9.6	¢
Peloscolex multisetosus	1	ı			,	,			-1	0	28.4	9,0
multisetosus												
lubifex kessioni americanus		~	18,9	0.3	ı					ı		
Insecta												
Unprema												
Chiroponinae												
Crystaching an		_	4	=		,			,			
Polypedilum scalaenum type	,	٠,	,	;	,	,			-	,	9.5	0.2
Pscudochironomis sp.	1	:			ı	:				ı	9,5	0.2
Tanypodinae									ı			
Procladius sp.	ব	ı	97.8	1.3	ı	1			ı	ı		
Orthodiau mas Ericatomis švivastris acom	:	ı			;	,			,	-	¢.	0
Manoc adius sp.	ı	ı			i				-		4.	0.2
TO LAL BENETIOS			2920.3				4876.2				4999,7	

TABLE 3.2-8 NUMBER PER REPLICATE, MEAN NUMBER PER METER SQUARE AND PERCENT OCCURRENCE OF BENTHIC MACROINVERTEBRATES AT THREE LOCATIONS NEAR THE DRESDEN STATION, 21 JULY 1981.

				1								
			tion 5				tion /			l.oca	tion 9	
	Mo./Rep	offcate	Mean		No./Re	plicate	M ean	•••	No./Rep	plicate	Mean	
Taxon	. A	В	<u>no./m²</u>	3	A	6	ao.∕m²	_1	Α	В	no./m²	<u> </u>
01 igochaeta				!								
Naididae				i								
Dero sp.	1	-	9.5	0.3	1	-	9.5	0.9	-	4	37.8	0.3
Tubi?icidae				!								
Unidentified Lumature with	10	6	151.2	4.2	-	4	37.8	3.7	20	12	302.4	2.5
cap. chaetae				ļ								
Unidentified Immature without	98	85	1/29.4	48.4	21	16	349.6	33.9	640	400	9828.0	82.8
cap. chaetae												
Aulodrilus piguetī	_	4	37.8	1.0		_			-	-		
Branchiura sowerby:	<u>1</u>		9.5	6.3	-	-			-	_		
<u>Hlyodrilus templotoni</u>	ì	ŀ	18.9	0.5	_	-			8	_	75.6	0.6
Limnodrilus cervix variant	9	3	113.4	3.2	1	l	18.9	1.8	16	16	302.4	2.5
F. claparedeianus	-	-		-	j.	-	9.5	0.9	_			
L. hoffmeisteri	40	42	774.9	21.7	5	3	75.6	7.3	32	24	529.2	4.5
t maumeensis	20	19	363.6	10.3	3	-	28.4	2.8	_	_		
£. udekemianus	1	_	9.5	0.3	-	ì	9.5	0.9	8	9	151.2	1.3
Peloscolex multisetosus longidentus	_	_		'	_	_			_	4	37.8	0.3
Insecta										•		_
Chri nonomi dae										•		
Shironominae .												
Cryptochironomus sp.	_	3	28.4	0.8	_	_			_	_		
Polypedilum simulans type	_	_	•		Ţ	1	18.9	1.8	_	_		
Tanypodinae					-							
Coelotanypus sp.	1 .	_	9.5	0.3	_	_			_	_		
Procladius sp.	7	22	2/4.0	7.7	_	-			32	28	567.0	4.8
Tanypus stellatus	ž	2	37.0	1.0	_	_					547.5	•
MoThusca	-	_										
Pelecypoda												
Corbicu) Idae												
Corbicula flumines	-	-			8	42	472.5	45.9	4	-	37.8	0.3
TOTAL BEN1HOS			3572.4			1	1030.2				11869.2	

TABLE 3.2-9 NUMBER PER REPLICATE, MEAN NUMBER PER METER SQUARE AND PERCENT OCCURRENCE OF BENTHIC MACROINVERTEBRATES AT THREE LOCATIONS NEAR THE DRESDEN STATION, 25 AUGUST 1981.

		Loca	tion 5				tion /				tion 9	
	No./Rep		Mean		No./Rep	licate	Mean		No./Rep	licate	Mean	
laxon	_ <u>A</u>	B	no./m²	<u> </u>	A	В	<u>no./m²</u>	%	A	. <u>B</u>	mo./m²	·
Oligochaeta												
Najdidae	_											
<u>Dero</u> sp.	1	ì	18.9	1.8			0.5	0.4				
Wapsa mobilis					1		9.5	0.4				
Tubificidae												
Unidentified Lumatures with	,					2	4/.2	2.1	8		75.6	6.5
cap. chaetae	6	1	66.1	6.4	3	ć	4/.2	2.1	0		/3-0	0.3
 Unidentified Immature without 	10		4000	04.0	26	34	661.5	29.0	16	68	793.8	67.7
cap. chaetae	16	11	255-1	24.8 2.8	36 5	2	66.1	2.9	10	4	37.8	3.2
Aulodrilus pigueti	2	Ţ	28.3		5	2	00-1	2.9		•	37 .47	3.2
Hyodrilus templetoni		?	18.9 9.5	1.B 0.9	. 3		28.3	1.2				
Limnodrilus cervix		1	9.5	0.9	3	4	66.1	2.9				
L. cervix variant					6	-1	56.7	2.5	4		37.8	3.2
l. claparedeianus L. hoffmeisteri	10	10	189.0	18.4	12	11	217.4	9.6	•	4	37.8	3.2
	12	5	170.1	16.5	4	-1	75.6	3.3	4		37.8	3.2
L mauneensis L üdekemianus	12	1	9.5	0.9	5	i	56.7	2.5	•		0	***
Peloscolex multisetosus		ì	9.5	0.9	3	•	5000		8		75.6	6.5
longidentus			31.5	0.5					~			-
P. m. multisetosus										4	37.8	3.2
Insecta										•		
Diptera												
Chironomidae												
Chironominae												
Cryptochironomus sp.	5	4	85.0	8.3	ı	2	28.3	1.2				
Polypedilum scalaenum type	-					1	9.5	0.4				
P. shmulans type						1	9.5	0.4				
Tanypodinae												
Procladius sp.	11	6	160.6	15.6						4	37.8	3.2
Mollusca												
Pelecypoda												
Corbiculidae												
Corbicula fluminea	Ĺ		9.5	0.9	46	54	945.0	41.5		-		
TOTAL BENTHOS	64	45	1030.0		125	146	2277.4		40	84	1171.8	

NUMBER PER REPLICATE, MEAN MUMBER PFR METER SQUARE AND PERCENT OCCURRENCE OF BENTHIC MACROINVERTEBRATES AT THREE LOCATIONS NEAR THE DRESDEN STATION, IS SEPTEMBER 1981

		1				-	7			-	6 7	
	No./Replicate	icate	ate Mean		Mo./Replicate	l (cate	ate Mean		Mo./Replicate	1cate	ate Mean	
axon	€	<u></u>	no./m2	ъq	4	ß	no./m ²	34	₹	-	no./m ²	- ≽4: □
Mematoda Oligochaeta Maidica	-		.5 5	9.2		80	75.6	4.5	φ	4	113.4	1.4
mountage Tubifficidae		œ	75.6	2.1								
Unidentified Jamatures with cap, Chaette Unidentified Jamatures without	1.	11	170.1	4.6		12	113.4	6.9	24	00	302.4	3.6
united in marines without cap, chaete	111	55 55	2372.0	54.4		104	982,8	8-69	220	272 A8	4649.4	92°6
Branching Engerthy Branching Somethy i	; -	^	0 0			ব	37.8	2.3	4	3	37.8	0.4
Limportilus cervix yarlant		4 43	75.6	2.1		8	189.0	11.5	20	æ	264.6	3.2
1. hoffmeister	æ ·	13 13	198.5	ب د		က	75.6	4.6	52	ş	869.4	10.4
L. mauneensis L. idekemianus	ব থ	ഹവ	985 0. 15 0. 15	or m		71 4	37.8	୭ ମ ୨ ଧ	∞4	15 8	189.0	ر در م
<u>Peloscolex multisetosus longidentus</u> Insecta	l	l							16	ı	151.2	1.8
Diptera Chimomidae												
Chironominae												
<u>Cryptochironomus</u> sp. Tanynodinae		2	18.9	9-2					αò		75.6	6-0
Procladius sp.	8	-	85.0	2,3								
Pefecypoda												
Corbicula Courtes					M		18.9	1.1				
TOTAL BENTHOS	161	229	3685,5		8	172	1644.3		434	400	8353.8	

TABLE 3.2-11 MEAN DENSITY (NO./m²) AND RANGE FOR UNIDENTIFIED IMMATURE TUBUFICIDAE WITHOUT CAPILLIFORM CHAETAE AT THREE LOCATIONS NEAR THE DRESDEN STATION, JUNE - SEPTEMBER 1981

		cation S	Lo.	cation 7		cation 9
Date	Mean Density	Range	Mean Density	Range	Mean Density	Range
23 June	1,379.7	1,360.8-1,398.6	2,910.6	1,814.4-4,006.8	3,638.3	2,683.8- 4,592.7
21 July	1,729.4	1,606.5-1,852.2	349.6	302.4- 396.9	9,828.0	7,560.0-12,096.0
25 August	255.1	207.9- 302.4	661.5	642.6- 680.4	793.8	302.4- 1,285.2
15 September	2,372.0	2,097.9-2,646.0	982.8	0.0-1,965.6	4,649.4	4,158.0- 5,140.8
MEAN	1,434.0		1,226.1		4,727.4	

TABLE 3.2-12 MEAN DENSITY (NO./m²) AND RANGE FOR UNIDENTIFIED IMMATURE TUBUFICIDAE WITH CAPILLIFORM CHAETAE AT THREE LOCATIONS NEAR THE DRESDEN STATION, JUNE - SEPTEMBER 1981

	Location 5		Location 7		Location 9	
Date	Mean Density	Range	Mean Density	Range	Mean Density	Range
23 June	293.0	207.9-378.0	264.6	226.8-302.4	396.9	321.3-472.5
21 July	151.2	113.4-189.0	37.8	0.0- 75.6	302.4	226.8-378.0
25 August	66.1	18.9-113.4	47.2	37.8- 56.7	75.6	0.0-151.2
15 September	170.1	132.3-207.9	113.4	0.0-226.8	302.4	151.2-453.6
MEAN	170.1		115.8		269.3	

TABLE 3.2-13 MEAN DENSITY (NO./m²) AND RANGE FOR LIMNODRILUS HOFFMEISTERI AT THREE LOCATIONS NEAR THE ORESOEN STATION, JUNE - SEPTEMBER 1981

	Lecation 5		Location 7		Location 9	
Date	Mean Density	Range	Mean Density	<u>Range</u>	Mean Density	Range
23 June	510.3	453.6-567.0	982.8	982.8-982.8	463.1	283.5-642.6
21 July	774.9	756.0-793.8	75.6	56.7- 94.5	529.2	453.6-604.8
25 August	189.0	189.0-189.0	217.4	207.9-226.8	37.8	0.0- 75.6
15 September	198.5	151.2-245.7	75.6	0.0-151.2	869.4	756.0-982.8
MEAN	418.2		337.8		474.9	

TABLE 3.2-14 MEAN DENSITY (NO./m²) AND RANGE FOR LIMNODRILUS MAUMEENSIS AT THREE LOCATIONS NEAR THE DRESDEN STATION, JUNE - SEPTEMBER 1981

	Location 5		Location 7		Location 9	
Date	Mean Density	Range	Mean Density	Range	Mean Density	Range
23 June	444.0	378.0-510.3	226.8	151.2-302.4	-	
21 July	368.6	359.1-378.0	28.4	0.0- 56.7	-	
25 August	170.1	113.4-226.8	75.6	75.6- 75.6	37.8	0.0- 75.6
15 September	85.0	75.6- 94.5	113.4	0.0-226.8	189.0	151.2-226.8
MEAN	266.9		110.1		56.7	

TABLE 3.2-15 MEAN DENSITY (NO./m²) AND RANGE FOR LIMNODRILUS CERVIX VARIANT AT THREE LOCATIONS NEAR THE DRESDEN STATION, JUNE - SEPTEMBER 1981

	Location 5		Location 7		Location 9	
Date	Mean Density	Range	Mean Density	Range	Mean Density	Range
23 June	47.3	18.9- 75.6	151.2	75.6-226.8	274.1	226.8-321.3
21 July	113.4	56.7-170.1	18.9	18.9- 18.9	302.4	302.4-302.4
25 August	<u></u>		66.1	56.7- 75.6	<u>-</u>	
15 September	75.6	75.6-75.6	189.0	0.0-378.0	264.6	151.2-378.0
MEAN	59.1		106.3		210.3	

TABLE 3.2-16 MEAN DENSITY (NO./m²) AND RANGE FOR AULOGRILUS PIGUETI AT THREE LOCATIONS NEAR THE DRESDEN STATION, JUNE - SEPTEMBER 1981

	Location 5		Location 7		Location 9	
Date	Mean Density	Range	Mean Density	Range	Mean Density	Range
23 June	170.1	37.8-302.4	113.4	0.0-226.8	56.7	18.9- 94.5
21 July	37.8	0.0- 75.6	-		-	
25 August	28,3	18.9- 37.8	66.1	37.8- 94.5	37.8	0.0- 75.6
15 September	538.6	396.9-680.4	-		1,587.6	907.2-2,268.0
MEAN	193.7		44.9		420.5	

TABLE 3.2-17 MEAN DENSITY (NO./M²) AND RANGE FOR TOTAL CHIRONOMIDAE AT THREE LOCATIONS NEAR THE DRESDEN STATION, JUNE-SEPTEMBER 1981

Date	Location 5		Location 7		Location 9	
	Mean Density	Range	Mean Density	Range	Mean Density	Range
23 June	47.3	18.9-75.6	-		37.8	18.9-56.7
21 July	349.6	189.0-510.3	18.9	18.9~18.9	567.0	529.2-604.8
25 August	245.6	189.0-302.4	47.3	18.9-75.6	37.8	0~75.6
15 September	103.9	37.8-170.1	-		75.6	0.0-151.2
MEAN	186.6		16.6		179.6	

TABLE 3.2-18 MEAN DENSITY (NO./m²) AND RANGE FOR <u>CORBICULA</u> <u>FLUMINEA</u> AT THREE LOCATIONS NEAR THE DRESDEN STATION, JUNE - SEPTEMBER 1981

	Location 5		Location 7		Location 9	
<u>Date</u>	Mean Density	Range	Mean Density	Range	Mean Density	Range
23 June	-		-		-	
21 July	-		472.5	151.2 - 793.8	37.8	0.0-75.6
25 August	9.5	0.0-18.9	945.0	869.4-1,020.6	-	
15 September	•		18.9	0.0 - 37.8	-	
MEAN	2.4		359.1		9.5	

3.3 FISH MONITORING

3.3.1 Introduction

Monitoring studies of the fish populations in the vicinity of the Dresden Station have been conducted each year since 1971. These studies have provided information on species composition, abundance, distribution and condition of fishes in the study area as they related to various station operating modes. Over the 10 year period, additions were made in the monitoring design which have increased sampling intensity, sampling locations and the use of a variety of gear in an effort to better address the issue of station impact on the local fish community near the Dresden Station.

The 1981 fish monitoring program represented a continuation of the previous monitoring studies with the overall objective of assessing the effects of station operation, under indirect open cycle mode, on the fish community in the adjacent river systems. The study period coincided with the 15 June through 30 September period that CECo was granted permission by the IEPA to operate indirect open cycle at the Dresden Station. The sampling area included the Kankakee and Des Plaines Rivers, Dresden Island Pool of the Illinois River and Below Dresden Island Lock and Dam.

The specific objectives of the study were: (1) to document the species composition and relative abundance of fish at 13 locations in the river system; (2) to determine the distribution of fish within the study area; (3) to determine the coefficient of condition of selected fish species at each location; (4) to document the incidence of external parasites, diseases and physical abnormalities of fish at each location; and (5) to compare these variables among the locations. These objectives provide for a continuation of the historical data base and documentation of long-term trends in the Dresden area. Comparison of data among locations was used: (1) to determine if indirect open cycle operation affected fish distribution in the Dresden Pool, and, (2) to document differences in species diversity and fish abundance among locations above, within and below the station's discharge to the Illinois River. Differences in habitat for locations upstream and downstream from the Dresden Island Lock and Dam were also addressed.

3.3.2 Field and Analytical Procedures

3.3.2.1 Field Procedures

Sampling for fish was conducted at 13 locations in the study area (Figure 3.1-1 and Table 3.1-1). Locations 1, 2, 5, 6, 7, 9 and 10 were upstream of the Dresden Island Lock and Dam and Locations 11, 12, 13, 14, 15, and 16 were downstream of the lock and dam. Fish samples were collected once during the last two weeks in June and within the first two weeks and last two weeks of July, August and September using each gear type. Sample periods within a month and between months were separated by at least one week.

Electrofishing

Electrofishing was conducted with a boat-mounted electrofishing system. The system was energized with a 3000 watt, 230V three phase AC generator.

Sampling was conducted along the shoreline at each of the specified locations (1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 14, and 15). At location 6, sampling encompassed the entire area immediately in front of Units 2/3 discharge canal up to the chain link fence. Electrofishing at each location was conducted for approximately 15 minutes in an upstream direction. The upstream and downstream boundaries of each location were identified with location markers. All electrofishing and seining samples were collected within a consecutive two-day period with the exception of the first period when seining was not accomplished until the third day.

<u>Seining</u>

Seining was conducted at Locations 1, 2, 5, 7, 9, 10, 11, 12, 13, 14, and 15. A seine, 25 ft in length and 6 ft in depth with a 0.25 in. mesh was used along the shoreline. The sampling distance depended upon the seinable area available at each location and was kept constant, to the extent possible, during each sampling period.

Gill Netting

Single samples (one overnight set) were collected at Locations 1, 2, 5, 7, 9, 10, 11, 12, 13 and 16 for each sample period. The nets were 125 ft long by 6 ft deep and consisted of five panels of nylon monofilament netting with bar mesh sizes ranging from 0.5 to 3 in. at 0.5 in. intervals without the 2.5 in. bar mesh. The nets were set during the afternoon of each date sampled and retrieved the following morning. Gill nets were set perpendicular to the shoreline at Locations 1, 2, 5, 7, 9, 10 and 16 whenever possible. At Locations 11 and 13, the gill net was deployed in a downstream direction at an angle from the shoreline. Gill net Location 12 was at the downstream end of electrofishing Location 12 and the net extended off the tip of Dresden Island, parallel to the shoreline. Changes in the positioning of the nets occurred (i.e., nets were set parallel to the shoreline instead of at an angle) when low river level and/or barge traffic interfered with proper setting of the nets. The duration of the net set at each location was recorded at the time of net retrieval. Three nets were either not recovered or pulled prior to the completion of the set time during the course of the study.

Fish Processing

Individual total length measurements (mm) and weights (g) of fish were recorded in the field for each species collected by electrofishing, seining and gill netting at each location. All fish were identified, weighed, measured, and counted. Weights were not taken of minnow species. When 100 individuals of a species were collected at any location by any single gear, all fish were counted, measured, and subsampled for weight using the following procedure. A minimum of 100 individuals were weighed based on an interval calculated from the total number captured divided by 100. For example, when 500 individuals of a species were captured, then every fifth fish was weighed. The total weight of the remaining individuals was recorded. When the number of fish was between 100 and 200, weights were taken in a systematic manner such that 100 individuals were weighed. A maximum of 10 fish of the following selected species, carp (Cyprinus carpio), goldfish (Carassius auratus),

carp x goldfish, shorthead redhorse (<u>Moxostoma macrolepidotum</u>), and smallmouth bass (<u>Micropterus dolomieul</u>) which were collected at each location and by each sampling gear were examined for sex determination and maturity. The sex and stage of gonadal development were recorded using the following criteria:

- Immature young individuals not yet engaged in reproduction; very small sexual organs close under the vertebral column; sex usually not apparent to the naked eye:
- Mature sexual organs well-developed; ovaries with eggs clearly discernible; testes reddish-white;
- Ripe sexual organs filling ventral cavity; testes white; gonads achieved maximum weight, but sexual products not extruded even with light pressure;
- 4. Ripe and Running roe and milt run with slight pressure; most eggs translucent; and,
- Spent testes and ovaries empty; a few eggs in state of reabsorption; gonads with appearance of deflated sacs.

Most fish were processed in the field immediately after collection and returned to the river. Some non-sport fish were preserved in formalin and returned to the laboratory for processing: included were specimens requiring taxonomic verification and small fish from seine catches. All fish were examined either in the field or the laboratory to determine the incidence of external disease, parasites and physical abnormalities. A reference collection of most species obtained from electrofishing, seining, and gill netting was compiled. All muskellunge (Esox masquinongy), walleye (Stizostedion vitreum), striped bass (Morone saxatilis), white bass (Morone chrysops), sauger (Stizostedion canadense) and smallmouth bass collected were preserved, identified as to date, sampling gear and location of capture, and delivered to Southern Illinois University personnel.

Field and laboratory personnel kept complete and permanent records and followed EAI's chain-of-custody procedures, in conjunction with the quality assurance program, at all times.

3.3.2.2 Laboratory Procedures

Some fish were returned to the laboratory for analysis. Measuring, counting, and subsampling procedures were the same as those described for the field.

3.3.2.3 Data Handling and Analysis

Most fish data were computer processed using appropriate quality control procedures and verified and documented programs that are part of EAI's "FRESH" software package. Data processed manually followed EAI's quality assurance procedures as specified in the Fisheries Procedures Manual (EAI 1981a). Data summaries were presented following table formats approved by CECo.

Electrofishing data were reported as number, catch-per-unit-effort (CPE per hour of electrofishing) and percent abundance for each species. Data were separated by area (above and below the lock and dam) location and sampling period. Data obtained by seining were reported as number and percent abundance for each species by area, location and sampling period. Data obtained by gill netting were reported as number, percent abundance, and catch-per-unit-effort for each species during an eight-hour sample period; these data were also separated by area, location and sampling period. Summaries of the catch data for each gear type were prepared for combined dates. Total number of fish, average CPE and percent abundance were included in the summaries. Tables which include the letters "AD" after the scientific name of fish species denotes the term "adult" because of the computer program requirement for identifying fish by life stage. These letters do not signify that all of the fish collected are adults and the notation should simply be ignored.

Coefficient of condition (K-factors) were determined for species which were sexed using the equation described by Carlander (1977):

$$X = \frac{\text{W} \times 10^5}{13}$$

where:

 $K_{(TL)}$ = coefficient of condition where total length is used

N = weight in grams

L = total length in millimeters

Fish from electrofishing, seining and gill netting were combined by month for K-factor and data were reported as mean values for each location. The incidence of external parasites, diseases, and physical abnormalities were reported for each species as number and percent affected at each location and total catch by sampling date.

3.3.2.4 Physicochemical Measurements

Dissolved oxygen concentrations and water temperatures were measured at the surface, at subsequent 1-m depth intervals and at the bottom of each sampling location where depth permitted, but only at mid-depth where water was 1-m or less in depth. Measurements were taken on each sampling day at those locations where sampling was conducted. Specific conductivity measurements were also taken at each electrofishing location during each sampling period. Dissolved oxygen, temperature, and conductivity measurements were taken using a calibrated Hydrolab Water Quality Measurement System. The instrument was calibrated in the field before and after each sampling effort (see Section 2.2.2). Calibration results are reported in Appendix F. Percent oxygen saturation was determined from the relationship of dissolved oxygen in the water and the water temperature.

3.3.2.5 Station Operating Status, Cooling Water and River Flows

Daily station operating status (megawatt output) of Units 2 and 3 and cooling water flows were supplied by CECo. for the period of 15 June through 30 September. Cooling water usage at Units 2 and 3 was based on the number of circulating water pumps in operation each day and the rated capacity

(157,000 gpm) of each pump. The number of lift station pumps that transfer the cooling water from the station discharge canal to the cooling pond was assumed to be generally equal to the number of circulating water pumps in operation. The daily water flow (cu. ft./sec.) in the lower Kankakee and Des Plaines rivers and the upper Illinois River (Dresden Pool) was determined from flow measurements obtained at gaging stations on the Kankakee River at Wilmington and Illinois River at Dresden Island Lock and Dam. The flow of the Des Plaines River was based on the difference in flow between the Kankakee and Illinois rivers.

3.3.3 Results and Discussion - Dresden Pool

3.3.3.1 Review of Catch Results

A total of 52 fish taxa, represented by 47 species, 2 genera, 1 family and 2 hybrids, was collected in the vicinity of Dresden Station during the 22 June through 23 September 1981 sampling period (Table 3.3-1). Of the three gear types used, electrofishing was most productive in terms of both variety and number of fish collected. Forty-six taxa, totaling 2,278 fish, were collected by electrofishing at the seven locations surveyed (Table 3.3-2). Seining at six locations produced 29 taxa totaling 603 fish (Table 3.3-3), while gill netting yielded 21 taxa and 522 fish (Table 3.3-4).

Rough and forage fish made up most of the catch in the study area. Thirty-five percent of the 3,403 fish collected were gizzard shad (Dorosoma cepedianum), 20 percent were emerald shiners (Notropis atherinoides), and 15 percent were carp.

The most complete description of the spatial distribution and abundance of fish in the study area was provided in the electrofishing data. Gill net data provided supportive information on the spatial abundance of carp. Although a greater number of carp were collected in gill nets than by electrofishing, the proportion within each location was similar, except at location 9 where carp were more effectively sampled by electrofishing. Goldeye (Hiodon alosoides) was the only species collected solely in gill nets. Seining data documented the occurrence of several species which were not collected with other gear. Seining data also revealed that emerald shiners were more abundant at Locations 1 and 2 than was indicated by the electrofishing data; the two methods revealed that the emerald shiner was an abundant species throughout the study area.

3.3.3.1.1 Electrofishing

The dominant species collected by electrofishing were gizzard shad, emerald shiner, green sunfish (Lepomis cyanellus) and carp (Table 3.3-2). These fish constituted 77 percent of the total catch. By weight, greatest catches were for carp, gizzard shad, and carp x goldfish hybrid (most minnow species were not weighed). These fish accounted for 70 percent of the total weight of the fishes that were weighed.

A comparison of the total electrofishing catches among the seven locations revealed little difference in the total catch-per-unit-effort (CPE) and number of species, except at Location 6 (discharge) (Table 3.3-5). The total

CPE at Location 6 was at least double the CPE at the other six locations and an additional four to nine species of fish per collection period were encountered at Location 6 as well. Sunfishes (Centrarchidae), especially green sunfish and bluegill (Lepomis macrochirus), and emerald shiners were particularly more abundant at Location 6 and accounted for the greater total CPE at that location. Spatial differences were also noted for other species in the study area. Carp x goldfish hybrids were commonly found only at Location 1 (Des Plaines River). Redhorses were well represented at Locations 1, 2, 8 and 10 but were particularly scarce at Location 6 and low in abundance at Locations 7 and 9. Redhorses were common in the gill net catches at Location 7 (Section 3.3.3.1.3), however, indicating that they were probably more abundant at that location than was shown by the electrofishing data. In contrast, there was little difference in the spatial distribution of gizzard shad and carp in the study area.

3.3.3.1.2 Seining

The dominant species collected by seining were gizzard shad and emerald shiners (Table 3.3-3). Excluding most of the minnow species which were not weighed, the dominant fishes by weight were gizzard shad, carp x goldfish, freshwater drum (Aplodinotus grunniens), white crappie (Pomoxis annularis) and carp.

The total seining catches were comparable among Locations 1, 2, 5 and 10, ranging from 73 to 102 fish (Table 3.3-6). The greatest total catch was obtained at Location 7 whereas Location 9 yielded the smallest catch. Most gizzard shad were collected at Location 7 and accounted for the greater total catch at that location than at the other five locations. The emerald shiner was the dominant species at Locations 1, 2 and 5 and along with gizzard shad, made up most of the catch at Location 10. The most abundant species collected at Location 9 was freshwater drum. Little difference was observed in the number of species among locations, except at Location 2, where the number was noticeably larger.

3.3.3.1.3 <u>Gill</u> Netting

Carp was the dominant species collected in gill nets; it accounted for 57 percent of the numerical catch and 66 percent of the catch by weight (Table 3.3-4). Following carp in numerical abundance were gizzard shad, shorthead redhorse and carp x goldfish hybrid. These three taxa accounted for 20 percent of the total number and 13 percent of the total weight.

Some notable differences occurred in the spatial distribution and abundance of gill net catches in the study area. The number of species collected at each location was quite variable, ranging from 16 species at Location 7 to 4 species at Location 10 (Table 3.3-7). The total catch varied from 10 fish/8 hours of gill netting at Location 7 to 2 fish/8 hours at Locations 2 and 9. Carp was the major species collected at all locations although the numbers captured at Locations 1 and 7 were substantially greater than at the other four locations. Other fishes which made up a substantial part of the total catch at one or more locations were carp x goldfish hybrid at Location 1 and gizzard shad at Locations 2 and 5 Most redhorse spp. were collected at Locations 5 and 7.

3.3.3.2 Physicochemical Measurements

Water temperature, dissolved oxygen concentration (DO) and conductivity were measured in conjunction with each fisheries survey. Temperature followed a

consistent and predictable pattern throughout the study period. The lowest temperatures were consistently measured at upstream Locations 2 and 5 (Tables 3.3-8 through 3.3-II). Temperatures were ≤ 1 C different between the two locations on most dates, although in mid-August and late September, the temperature at Location 5 was 1 to 2 C higher than at Location 2. During these periods Kankakee River flow was relatively low (Section 4.0, Table 4.4-1) and the Location 5 sampling area probably represented a mixture of Kankakee and Des Plaines Rivers' water. The highest temperatures were measured at the discharge (Location 6) on the seven dates that measurements were taken there. Discharge temperatures were 3.7 to 7.5 C higher than at Location 2 and 1.1 to 7.2 C higher than at Location 5. On most dates the difference was >4 C. Temperatures at Locations 7, 9 and 10 (downstream of the discharge) were under influence of the thermal plume during six of seven sampling periods. Of the three downstream locations, the thermal influence was most evident at Location 7. Temperatures at Location 7 were 1.3 to 3.5 C lower than at the discharge but 0.8 to 4.8 C higher than at Locations 2 and 5 (one exception to this trend occurred on 21 September when the temperature at the discharge was lower than at Locations 7, 9 and 10). On 10 additional dates (temperatures were not measured at the discharge), temperatures at Location 7 were 0.1 to 4.2 C higher than at Locations 2 and 5. Temperatures at Location 9 (directly downstream from Location 7) were 0.1 to 3.2 C lower than at Location 7 with the greatest difference occurring from mid-June through mid-August. Temperatures at Location 10 (across the river from Location 7) were generally comparable to or slightly higher (≤ 0.6 C) than at Location 9. Temperatures in the Des Plaines River at Location 1 were 0.6 to 4.8 C higher than in the Kankakee River at Location 2 and frequently >2 C higher. Compared to the discharge, temperatures at Location 1 were 0.2 to 3.7 C lower and generally the difference was ≥ 2 C. Compared to the locations affected by the thermal plume, temperatures at Location 1 were generally higher than at Locations 9 and 10 but lower than at Location 7.

Dissolved oxygen concentrations (DO) at upstream Locations 2 and 5, discharge Location 6 and below the discharge at Location 7, were generally similar from mid-June through mid-August (Tables 3.3-8 through 3.3-11). During this period, DO typically exceeded 7 mg/l. DO was generally slightly lower at Location 9 (6 to 7 mg/l, on most dates) and the lowest DO occurred at Locations 1 and 10 (generally 5.5 to 6.5 mg/l). DO at Location 1 and 10 did not vary much through September but changes were evident at Locations 2, 5 and 6. DO gradually increased from mid-August through September at Location 2 with the highest DO's measured in late September. In contrast, the DO at Location 5 decreased and was <7 mg/l by late September. During this period, Kankakee River flow was relatively low and the location 5 sampling area probably represented a mixture of Kankakee and Des Plaines Rivers' water. DO at the discharge remained comparable to the DO in the Kankakee River during this period.

Conductivity generally ranged from 400 to 700 $_{\rm H}$ mhos/cm but reached as high as 780 $_{\rm H}$ mhos/cm during the study period (Tables 3.3-8 through 3.3-11). Conductivity was generally comparable at Locations 2, 5, 6, 7 and 9 although notable exceptions occurred, particularly at Location 2 in late September. Conductivity at Locations 1 and 10 was generally comparable and frequently higher than at the other five locations.

3.3.3.3 Spatial and Temporal Distribution of Fish

Fish were typically most abundant at Locations 6 and 7 which also generally exhibited the highest temperatures. This was particularly true at the discharge (Location 6). Location 7 exhibited a similar relationship but not as pronounced. The more random distribution of fish in the study area in late September coincided with an absence of a well-defined thermal plume in the Illinois River. Although Location 1 exhibited higher temperatures than at most locations, catches were frequently as small or smaller than at other locations where temperatures were consistently lower which demonstrates that temperature was not the sole contributing factor associated with the spatial distribution of fishes in the study area.

Location 6 produced the greatest variety of fish by electrofishing on all but one sampling date, although location differences were generally not substantial (Tables 3.3-12 through 3.3-18). Catches of fish at Location 6 were 1.9 to 4.7 fold greater than at the other six locations from mid-June through August. In September the greatest catches were at Location 2 or 5. Catches at Location 7 were consistently greater than at most other locations, although the differences were not substantial. On most dates there were one to two locations that produced much smaller catches although there was no pattern among locations during the study.

The major differences in catches between Location 6 and other locations in June and July were for green sunfish and bluegill. Emerald shiner and in some instances gizzard shad also accounted for some of the difference. Fish were not as concentrated at Location 6 in September as in previous months; rather, they were more evenly distributed within the study area. Gizzard shad was the dominant species at all locations in early September and along with emerald shiner constituted most of the catch in late September.

Gill net and seine data provided limited information on the spatial and temporal distribution of fishes in the study area because: (1) sampling was excluded at the discharge, and (2) neither gear type was very effective in capturing most fishes. Gill nets were most effective for capturing carp. Fish (primarily carp) were most abundant at Locations 7 and 1 from June through August (Tables 3.3-19 through 3.3-23). Location 5 produced the greatest catches in September followed by either Location 1 or 7 (Tables 3.3-24 and 3.3-25). Again, carp was the dominant species at Locations 1 and 7 whereas at Location 5, gizzard shad, followed by carp and goldeye, were dominant.

Seine catches were small on most sampling dates (Tables 3.3-26 through 3.3-32). Gizzard shad accounted for most of the seine catches in June and July; most individuals were collected at Location 7 on 24 June. Emerald shiner dominated the catches in August and September with Locations 2 and 5 generally producing the most fish.

3.3.3.4 Coefficient of Condition

The coefficient of condition (K-factor), a measure of the relative robustness or plumpness of fish, was determined for carp, carp x goldfish hybrid,

goldfish, shorthead redhorse and smallmouth bass (Table 3.3-33). Mean K-factors for adult carp were largest in June, ranging from 1.40 to 1.66. There were no consistent differences in K-factors between males and females and values were comparable for both sexes at all locations. Slightly smaller values were observed at most locations in July. K-factor values were comparable for adult fish during August and September. Values were lower than the preceding months, ranging from 1.22 to 1.50, with no consistent differences between the sexes. Values were similar among locations in both months. K-factors for immature carp were variable over the four month period, but were generally slightly smaller than for the adult fish. Values varied among locations but no consistent differences were evident.

During June and July, most K-factor values were similar for adult carp x goldfish hybrids, ranging from 1.51 to 1.87. No consistent differences were apparent between males and females although values for females were slightly higher (range: 1.65 to 2.22) than those observed for males (1.54 to 1.87). Values decreased in August and September (1.35 to 1.81) with few consistent differences between males and females. In both months, K-factors for both sexes were variable among locations. Seven immature carp x goldfish hybrids were collected during the four month period. K-factors among the immatures were generally similar to or slightly smaller than for adult fish during the same period. No distribution differences were evident due to the small number of immature fish collected.

Six goldfish, all adults, were collected and analyzed for K-factors during the study. The K-factor value observed for female fish in June was higher (2.93) than for males (1.59). One female collected in July had a K-factor of 3.39. The two males collected in September had a mean K-factor of 2.60. The small sample size precluded any discussion of distributional differences.

K-factors for adult shorthead redhorse were similar for June and July, ranging from 0.83 to 1.13. Values were more variable for adults in August (0.61 to 1.01) and September (0.66 to 1.04). Differences between males and females were not consistent during the four month period. Values among locations were variable during all months. K-factors for immature shorthead redhorse were similar to those observed for adult fish during all months.

K-factors for the two adult smallmouth bass captured in July differed widely (0.94 and 1.77) but values were similar among the fish captured in August and September, ranging from 1.13 to 1.37. Distributional differences were not apparent from the small sample size. Values for immature fish were fairly consistent from June through September with most values falling within a range of 0.94 to 1.30. Although fewer fish were collected in June and August, the similarity in K-factors of immature smallmouth bass collected during July and September at all locations suggest few spatial differences over the four month period.

3.3.3.5 Incidence of Disease, Parasitism and Abnormalities of Fish

Diseases, parasites and physical abnormalities were identified from 156 fish (4.6 percent of total catch) representing 17 species and one hybrid (Tables 3.3-34 through 3.3-40). The most frequent disorders of fish (75 percent of

all disorders identified) were primarily deformed, eroded and/or missing fins. Nearly all 17 species were affected with a fin disorder; more commonly affected species were carp, carpsuckers, buffalo and redhorses.

Physical injuries and deformities represented approximately 19 percent of all disorders. Injuries, in the form of lacerations, lesions, etc., occurred on carp, channel catfish, largemouth bass and redhorses. Physical deformities of knothead and scoliosis affected carp, redhorses and gizzard shad.

Parasites were the most infrequent of all disorders identified, they were encountered on only eight fish. Leeches occurred on channel catfish and shorthead redhorse, with only one incidence each of blackspot, white spot and anchor worm affecting bullhead minnow, shorthead redhorse, and carp, respectively.

Few spatial differences in the incidence of disorders were observed during the study. Generally, occurrence of disorders at locations below the confluence of the Des Plaines and Kankakee Rivers was variable. A slightly higher incidence of disorders was noted for fish collected at Location 1 than at locations in the Kankakee River. The difference was generally associated with the greater numbers of more commonly affected species collected at that location.

3.3.3.6 Changes in the Fish Community in the River System

Monitoring studies of the fish populations at the confluence of the Kankakee and Des Plaines Rivers and in Dresden Island Pool of the upper Illinois River have been conducted annually since 1971. The initial program was limited to seining at three locations (Locations 2, 5 and 7). Over the 11 year period. locations and collection methods were added to the sampling program to enhance the data base and to gather more specific information on the effects of station operation on the local fish community. During this time span, the station has been operating with either two or all three units. Unit 1, which began operation in 1960, was operational through October 1978 but has been out of service since that time. Units 2 and 3 were put into service in August 1970 and November 1971, respectively, and have been operational since that time. The operating mode of Unit 1 was exclusively open cycle. Units 2 and 3, which share a common intake separate from Unit 1, were designed with a cooling water system that has the capacity to operate both closed and open cycle. Upon completion of the spray canal, cooling pond systems, and Unit 3 in 1971, indirect open cycle operation began and continued until October 1974 when the station went to closed cycle operation. Since that time closed cycle has been the principal mode of operation. In July 1977, the Thermal Compliance Plan was approved by the USEPA which allowed the Dresden Station to operate under the daily adjusted variable blowdown scheme during the summer months through 1980. In 1981 CECo was granted permission to operate indirect open cycle from 15 June through 30 September. The following discussion addresses the changes observed in the fish community in the river system over an 11 year period of operation of the Dresden Station.

Electrofishing has been conducted since 1974 and has provided the most complete data on the fish community in the river system near the Dresden

Station. In comparing the changes in the fish community composition and abundance and station operation, no relationship has been apparent with the possible exception of 1981. Over the eight year period the number of species collected at some locations has consistently increased whereas at other locations the number has varied (Tables 3.3-41 through 3.3-47). There has not been a trend toward a decreasing number of species at any location. Locations 1 and 10 have shown the most dramatic increase from 1974 to 1981. At both locations the number of species has approximately doubled since 1974. A trend toward increased numbers of species has also been evident at Locations 5 and 6 in recent years with the exception of 1980 when the number decreased.

The overall trend in abundance of fish in the study area has been relatively consistent at each location. Catches typically increased steadily for three or four years then began to decline in either 1977 or 1978 and continued to decline in 1978 or 1979. Catches either remained low or began to increase in 1980, followed by a substantial increase at all but one location in 1981. The 1981 increase coincided with a change in station operation from variable blowdown to indirect open cycle mode.

Gizzard shad and carp have accounted for most differences in fish abundance in the study area over the eight-year-period. Gizzard shad in particular accounted for the increase in fish abundance in the study area in 1981. Emerald shiners have contributed to some of the differences but only at some locations. Green sunfish and bluegill have also contributed to the changes in fish abundance at the discharge (Location 6). Other species have had relatively low abundance throughout the eight year period with only occasional exceptions. The goldfish has been relatively uncommon at locations in the Kankakee River and Dresden Island Pool but was abundant in the Des Plaines River at Location 1 in 1974. Goldfish abundance has continually declined since 1974, however. This trend has also been reported for goldfish in the lower Des Plaines River during the 1978-1981 period (Ecological Analysts, Inc. 1981b).

Seine catches have been variable over the 11 study years both in terms of diversity and abundance of fish (Tables 3.3-48 through 3.3-52). There has not been any distinct trend toward increasing or decreasing numbers of fish over the 11 year period. The emerald shiner has been the dominant species in the seine catches at most locations. Other species, such as gizzard shad, bullhead minnow and blunthose minnow, have also contributed substantially to the annual catches at several locations in one or more years and in some years has been the dominant species.

Gill netting was conducted in the study area only in 1980 and 1981. In both years carp have been the dominant species collected at all locations (Table 3.3-53). Gizzard shad has also been a dominant species at Location 2 in both years. The greatest catches have been recorded at Locations 1 and 7 in both years. Lower catches have been recorded at all locations in 1981 than in 1980.

3.3.4 Results and Discussion - Below Dresden Island Lock and Dam

3.3.4.1 Review of Catch Results

A total of 48 taxa, represented by 45 species, 1 family and 2 hybrids, was collected below Dresden Island Lock and Dam during the 22 June through 23 September 1981 sampling period (Table 3.3-54). Of the three gear types used, electrofishing was most productive in terms of both variety and number of fish collected. Forty-six taxa, totaling 2,624 fish, were collected by electrofishing at the five locations surveyed (Table 3.3-55). Seining at five locations produced 25 taxa totaling 605 fish (Table 3.3-56) while gill netting yielded 15 taxa and 221 fish (Table 3.3-57).

Rough and forage fish made up most of the total catch in the study area. Fifty-six percent of the 3,450 fish collected were emerald shiner, 12 percent were gizzard shad and 11 percent were carp.

The most complete description of the spatial distribution and abundance of fish below the lock and dam was provided in the electrofishing data. Gill net data provided additional information on the spatial abundance of carp and documented the occurrence of goldeye in the study area. Seine data provided supportive information on the abundance of emerald shiners and documented the occurrence of the red shiner (Notropis Lutrensis) in the study area.

3.3.4.1.1 Electrofishing

The dominant species collected by electrofishing were emerald shiner, gizzard shad and carp (Table 3.3-55). These fish constituted 81 percent of the total catch below the lock and dam. By weight, greatest catches were for carp, gizzard shad and largemouth bass (Micropterus salmoides) (most minnow species were not weighed). These fish accounted for 79 percent of the total weight of the species that were weighed.

Location comparison of fish community composition revealed little difference among the five locations. The number of fish taxa ranged from 24 to 28 among locations (Table 3.3-58). Location differences in fish abundance were more pronounced. The greatest abundance of fish, as indicated by catch-per-unit-effort (CPE) data, was recorded at Location 15. The CPEs at the other four locations were 82 to 191 less than at Location 15 with the lowest CPE recorded at Location 12.

Although the emerald shiner was the dominant species at all five locations, it also accounted for most of the difference in fish abundance among locations. Green sunfish also accounted for some of the location differences. Gizzard shad were rather evenly distributed within the study area and were second or third in abundance at each location. Spatial differences were also noted for carp, largemouth bass, carp x goldfish and black bullhead but they were not pronounced.

3.3.4.1.2 Seining

The dominant species collected by seining was the emerald shiner; it represented 66 percent of the total catch (Table 3.3-56). Other species accounted

small percentages of the total catch. A variety of species accounted for >5 percent of the total weight of fish; the greatest percentage was recorded for largemouth bass.

Location comparison of fish community composition revealed little difference among locations, except at Location 13 where fewer species were collected (Table 3.3-59). Fish abundance was variable among locations but not dramatically different. The largest number of fish were obtained at Locations 12 and 13 and the fewest at Location 15. The emerald shiner was the dominant species at each location but accounted for a greater percentage of the total catch at Locations 12, 13 and 14 than at Locations 11 and 15.

3.3.4.1.3 Gill Netting

Carp was the dominant species collected in gill nets; it accounted for 63 percent of the numerical catch and 78 percent of the catch by weight (Table 3.3-57). Following carp in abundance were gizzard shad, goldeye and carp x goldfish hybrid. These three taxa represented 24 percent of the total number and 15 percent of the total weight.

The greatest number of species and fish were captured at Location 12 (Table 3.3-60). The area sampled at Location 12 was at the downstream point of Dresden Island and was uniquely different from other locations in that it constituted a mixing area of water flowing from the dam and through the lock. Location 11, a short distance upstream from Location 12, produced the second greatest number of species and fish. Locations 13 and 16 produced few fish other than carp. Carp was also the dominant species at Locations 11 and 12 but gizzard shad was also well represented at both locations and goldeye was common at Location 12.

3.3.4.2 Physicochemical Measurements

Water temperature, dissolved oxygen concentration (DO) and conductivity were measured in conjunction with each fish survey. Temperatures were very similar throughout the study area on each sampling date indicating thorough mixing of the water below the lock and dam (Tables 3.3-61 through 3.3-64). The variability in temperature was <1 C on all dates but one and typically was <0.5 C among the six locations. Temporal differences in temperature were apparent but were not substantial. The highest temperatures were recorded on 8 July (27.9 to 28.2 C at the surface) and lowest on 23 September (19.7 to 19.9 at the surface). Temperatures typically ranged from 22 to 26 C on other dates.

Dissolved oxygen concentration was similar among Locations 12, 14, 15 and 16 on all sampling dates. The lowest DO was consistently recorded at Location 11 (directly below Dresden Island Lock) and generally the difference between Location 11 and Locations 12, 14, 15 and 16 was >1 mg/l. A similar pattern in DO was observed at these locations in 1980 (EAI 1981c). The DO at Location 13 (a short distance downstream from Location 11) was consistently higher than at Location 11 but generally lower than at other locations. Percent

oxygen saturation followed the same pattern as DO. DO saturation at Locations 12, 14, 15 and 16 was typically >90 percent whereas at Location 11 DO generally ranged from 70 to 85 percent saturation. Intermediate values were generally recorded at Location 13.

Conductivity was generally comparable among locations. The one exception was observed in early August when conductivity was variable. Lowest values were recorded in early August and highest values in late August.

3.3.4.3 Spatial and Temporal Distribution of Fish

Electrofishing data indicated little difference in the spatial occurrence of fish on most sampling dates (Tables 3.3-65 through 3.3-71). The one exception was on 6 July when no fish were collected at location 13 and only two species at location 14. Temporal variability in species occurrence was apparent but no well-defined pattern was evident among locations. Catches (CPE) generally varied at each location and among locations over time but in no well-defined pattern other than that the catches of fish at location 15 were as great or greater than at the other four locations on most sampling dates.

Emerald shiner consistently accounted for much of the catch differences among locations and between dates. Gizzard shad and carp also contributed to the spatial and temporal differences in abundance but the differences were not location specific. Green sunfish and largemouth bass were occasionally common in the locations 11, 14 and/or 15 and accounted for a portion of the catch differences among locations.

Gill net and seine data provided little additional information on the spatial and temporal occurrence and abundance of fish in the study area. Frequently, few species were collected with either gear at any location (Tables 3.3-72 through 3.3-85). Catches with both gear types differed among locations on all dates but they were not substantial. Gill net catches were greatest at locations 11 and/or 12 on all dates; carp and occasionally goldeye accounted for these differences. Seine catches were greatest at Location 12 and 13 in June, Location 13 in July, and either Location 13 or 14 in August and September. Emerald shiner and occasionally gizzard shad accounted for most of the catch differences among locations during the study.

3.3.4.4 <u>Coefficient of Condition</u>

The coefficient of condition (K-factor), a measure of the relative robustness or plumpness of fish was determined for carp, carp x goldfish hybrid, goldfish, shorthead redhorse and smallmouth bass (Table 3.3-86). K-factor values were similar (range: 1.33 to 1.74) for adult carp at most locations during the months of June and July. Although K-factor values were generally slightly higher for females than for males, differences were often inconsistent. Values decreased for adult fish in August ranging from 1.13 to 1.52. Similar values for males and females were observed at most locations, with no consistent differences between the sexes. Values for immature carp during all months were generally within the range of values observed for adults. No distributional differences were noted due to the small numbers of immature carp collected.

Values for carp x goldfish hybrid adults were variable for each month of the study; most values were within the range of 1.41 to 1.97. K-factors of immature hybrids were similar to the adult fish. Small sample sizes each month precluded any discussion of distributional differences.

Only five goldfish were collected during the first two months of the study. Values for males in June ranged from 1.60 to 2.02; the K-factor for the female collected in July was lower, at 1.45.

K-factors were determined for one adult shorthead redhorse (all females) each month. Values ranged from 0.95 in September to 1.30 in July. Values for immature fish were also variable, but most were within the range observed for adult fish.

Mean K-factors for adult female smallmouth bass ranged from 1.20 in June to 1.42 in July. Adult males collected in August and September had similar K-factor values. Values for immature fish were variable, but most had values lower than those observed for adults, ranging from 0.88 to 1.41. Distributional differences were not apparent from the small sample size of both adult and juvenile fish.

3.3.4.5 Incidence of Disease, Parasites and Abnormalities of Fish

Diseases, parasites and physical abnormalities were identified from 161 fish (4.7 percent of total catch) representing 21 species and one hybrid (Tables 3.3-87 through 3.3-93). Sixty-seven percent of all disorders identified were associated with a form of fin disorder including deformed, eroded or missing fins. Most species were affected; incidence was highest on carp (72 of 108 fish) followed by carpsuckers and redhorse (15 fish) and largemouth bass (6 fish).

Physical injuries and deformities represented approximately 24 percent of the disorders identified. Carp and black bullhead were the species most frequently affected by injuries such as lacerations and abrasions. Centrarchids, drum and quillback were also affected but less frequently. Body deformities, the result of disease or injury were common on carp. Four other species and one hybrid were also affected but in low numbers.

Parasites and disease were the most infrequent of all disorders; they were identified on 14 fish. Blackspot affected four species: green sunfish (4 fish), white crappie (1), yellow perch (1) and spotfin shiner (1). Tumors were present on carp and largemouth bass, and fungus on green sunfish and shorthead redhorse. One incidence of white spot occurred on carp.

Incidence of disorders was variable at all locations. In June and early September the occurence of disorders was higher at Location 12; this was associated with the collection of greater numbers of the more commonly afflicted carp.

3.3.4.6 Changes in the Fish Community in the River System

Monitoring studies of the fish populations below Dresden Island Lock and Dam have been conducted annually since 1979. Electrofishing and seining were used for collecting fish in all three years; gill netting was also used in 1981.

Electrofishing has provided the most complete data on the fish community below the lock and dam. The variety of species collected by electrofishing in 1981 was greater than in 1980 and comparable or greater than in 1979 at all locations (Table 3.3-94). Catches in 1979 were greater than in both 1980 and 1981 at all locations, except at Location 13 where the greatest catch was recorded in 1980. Catches in 1980 and 1981 were comparable at Locations 11, 12 and 15, whereas 1979 and 1981 catches were most comparable at Locations 13 and 14. In all three years, the greatest catches were obtained at Location 15.

Emerald shiner was primarily responsible for the difference in catches among the three years. Gizzard shad abundance varied little in 1980 and 1981 (the exception was at Location 13) but in both years abundance was greater than in 1979. Carp increased slightly from 1979 to 1981, except at Location 13 where abundance has decreased. In contrast, goldfish have consistently declined throughout the study area. Largemouth bass were not abundant in the study area in 1979 but have steadily increased since then. Abundance of other less abundant species, such as green sunfish and white suckers, has differed among the three years but the differences among locations have been variable. The remaining species have been low in abundance in all three years.

The number of species collected by seining has increased in each year at all locations; this difference was most pronounced in 1981 (Tables 3.3-95). In 1980 and 1980 seine catches were comparable at all locations, except at location 12, but lower than in 1981. The greatest catches were obtained at Locations 12 and 13 in both 1980 and 1981, whereas in 1979 location 15 produced the greatest number of fish. The emerald shiner has been the dominant species at each location in all three years (one exception was at Location 15 in 1980) and has contributed to most of the yearly differences in catches at all locations.

3.3.5 Habitat and Temperature Differences Above and Below Dresden Island Lock and Dam

Dresden Pool above the lock and dam is a more lentic environment than below the lock and dam. Eurrent is relatively slow with little fluctuation in water level. Locations 1, 2 and 5 are characterized by extensive shallow areas with primarily sand substrates and scattered areas of rubble, with bedrock along the shore at Location 5. Locations 7, 9 and 10, which border the main channel, have less extensive shallow areas with the bottom sloping to a greater degree into the adjacent channel. The substrate is a mixture of sand and/or silt, especially near the channel; rubble often occurs close to the shore. Unlike the remainder of the locations, the current is swift in the discharge (Location 6) and the substrate is mainly bedrock bordered by small patches of gravel.

Macrophytic growth was present at Location 6 along the shore; patches of submerged macrophytes were also scattered in shallow areas at Locations 7 and 9. All locations, except for Location 2 in the Kankakee River, were influenced to some extent by turbulence associated with barge traffic in the main channel.

Water temperatures were variable among locations above the dam. Temperatures recorded in the Kankakee River were cooler than in the Des Plaines River. Temperatures were generally similar at Locations 9 and 10, and were between those observed in the Kankakee and Des Plaines Rivers. Temperatures at Location 7 were generally warmer than at either Location 9 or 10 and were probably influenced to a greater extent by the thermal plume.

The area below Dresden Island Lock and Dam is more characteristic of a riverine environment. Overall, currents are swifter and especially turbulent at Locations 12 and 16 directly downstream of the dam. Greater fluctuations in water level are also evident, influenced by the operation of the lock and dam.

Most of the locations (11, 12, 14, 15, and 16) are similar in that the bottom drops off quickly a short distance from the shore. Substrate is composed mainly of rubble, gravel and larger rocks with sandy areas present only at Locations 12 and 14. Location 13 differs from all other locations by the presence of more extensive shallow areas, a sandy substrate and beach area.

Little macrophytic growth was observed at any location. During periods of high water levels, some cover is provided by terrestrial vegetation along the water's edge.

Shoreline disturbance produced by barge traffic occurs at all locations bordering the channel (Locations 11, 13, 14 and 15).

In contrast to the variability in temperatures observed above the dam, those recorded at all sampling locations below the dam were fairly uniform. Temperatures were most similar to those recorded at Locations 9 and 10 indicating a thorough mixing of the water as it passed through the lock and dam.

3.3.6 Summary and Conclusions

- The fish communities in both Dresden Pool and below Dresden Island Lock and Dam are primarily rough and forage fish. Obvious differences exist, however, in the abundance of some of these species between the two areas.
- 2. The greatest occurrence and abundance of fish in the Dresden Pool was found in the Dresden Station discharge in 1981. Sunfishes and emerald shiner were particularly more abundant at the discharge than at all other locations. The apparent attraction to the discharge over other areas was best explained by the higher temperatures that occurred there, although the presence of macrophytic growth, forage and swift current may also have been influencing factors. Relatively high temperatures observed in the Des Plaines River were not associated with high abundance, indicating that other factors also affect fish distribution in the river.

- 3. A variety of fish species, such as redhorse spp., showed no distinct preference for the discharge area and were rather evenly distributed or showed a preference for other areas in the Dresden Pool area.
- There were no consistent or pronounced spatial differences in fish abundance below the lock and dam.
- 5. The spatial differences observed in temperature, DO and conductivity in the Dresden Pool study area were attributed to the discharge of condenser cooling water from Dresden Pond and the existing water quality differences between the Kankakee and Des Plaines Rivers. These water quality parameters were fairly uniformly distributed below the lock and dam.
- 6. There were no definable spatial differences in the coefficient of condition of selected fish species either above or below the lock and dam. K-factors were generally comparable between the sexes; differences were observed but were inconsistent.
- 7. Physical abnormalities were commonly found on rough fish but not on other species. The most common disorders were eroded, deformed and missing fins. The incidence of fish disorders was similar above and below the lock and dam.
- 8. The fish composition in the Dresden Pool study area has fluctuated over the eight years of study from 1974 through 1981 with a trend toward increasing numbers of species at some locations. There has not been a trend toward decreasing numbers of species at any location. Below the lock and dam the trend from 1979 through 1981 has been an increase in the numbers of fish species.
- 9. The relative abundance of fish in the Dresden Pool study area has fluctuated over the eight year period with no distinct upward or downward trend in abundance. The yearly fluctuations in abundance have been similar at all seven locations surveyed. The greatest abundance of fish has been recorded at the discharge in all years. Fish abundance in 1981 was comparable to or greater than in most previous years. The relative abundance of fish below the lock and dam has also fluctuated over the last three years but with no definite pattern among locations.
- 10. Most of the yearly differences in fish abundance in the Dresden Pool have been related to fluctuations in abundance of gizzard shad and carp. Emerald shiner, green sunfish and bluegill have also contributed to some of the differences but the differences have generally been location specific. The substantial increase in fish abundance in 1981 over the previous two years is principally a result of an increase in gizzard shad abundance in the study area.
- 11. Indirect open cycle operations at Dresden Station in the summer of 1981 did not result in any major changes in the distributional patterns of fish in the study area compared to previous years under closed or variable blowdown modes; the one exception was that fish avoidance was not observed at the discharge during the period of warmest discharge

temperatures, as was typically noted in previous years. Recruitment to the river from Dresden Cooling pend during indirect open cycle operation was evident in the greater abundance of gizzard shad in 1981 over the previous two years.

3.3.7 References

- Carlander, K.D. 1977. Handbook of freshwater fishery biology. Iowa State Univ. Press. Ames. Iowa. 431 pp.
- Commonwealth Edison Company. 1977. Dresden Generating Station cooling water intake impact report. Commonwealth Edison Co., Chicago. 212 pp.
- Ecological Analysts, Inc. 1981a. Fisheries Procedures Manual. Ecological Analysts, Inc. Midwest Regional Office, Northbrook, Ill. 38 pp.
- Ecological Analysts, Inc. to Commonwealth Edison Co., Chicago, IL 40 pp.
- Ecological Analysts, Inc. to Commonwealth Edison Co., Chicago. 18 pp.

TABLE 3.3-1 COMMON AND SCIENTIFIC NAMES OF FISHES COLLECTED BY ALL GEAR TYPES IN THE DRESDEN POUL NEAR THE DRESDEN STATION, 1981

Common Name

LONGNOSE GAR SKIPJACK HERRING GIZZARD SHAD GOLDEYE GRASS PICKEREL NORTHERN PIKE MUSKELLUNGE MINNOWS GOLDFISH CARP CARP x GOLDFISH EMERALD SHINER COMMON SHINER SPOTTAIL SHINER RED SHINER SPOTFIN SHINER SAND SHINER SUCKERMOUTH MINNOW BLUNTNOSE MINNOW FATHEAD MINNOW BULLHEAD MINNOW CARPSUCKER RIVER CARPSUCKER QUILLBACK HIGHFIN CARPSUCKER WHITE SUCKER SMALLMOUTH BUFFALO BIGMOUTH BUFFALO REDHORSE SILVER REDHORSE GOLDEN REDHORSE SHORTHEAD REDHORSE BLACK BULLHEAD YELLOW BULLHEAD CHANNEL CATFISH FLATHEAD CATFISH TROUT -PERCH WHITE BASS YELLOW BASS ROCK BASS GREEN SUNFISH ORANGESPOTTED SUNFISH PUMPKINSEED BLUEGILL SUNFISH HYBRID SMALLMOUTH BASS

Scientific Name Lepisosteus osseus Alosa chrysochloris Dorosoma cepedianum Hiodon alosoides Esox americanus vermiculatus E. Tucius
E. masquinongy Cyprinidae <u>Carrasius</u> auratus Cyprinus carpio Notropis atherinoides N. cornutus N. hudsonius N. Tutrensis N. spilopterus N. stramineus Phenacobius mirabilis Pimephales notatus P. promelas P. vigilax Carpoldes sp. Carpoides carpio C. cyprinus C. velifer Catostomus commersoni Ictiobus bubalus I. cyprinellus Moxostoma sp. Moxostoma anisurum M. erythrurum M. macrolepidotum Ictalurus melas I. natalis I. punctatus

I. punctatus
Pylodictus olivaris
Percopsis omiscomayous
Morone chrysops

M. mississippiensis
Ambloplites rupestris

Lepomis cyanellus L. humilis

L. <u>oibbosus</u> L. <u>macrochirus</u> Lepomis sp.

Micropterus dolomieui

TABLE 3.3-1(CONT.)

Common Name

LARGEMOUTH BASS WHITE CRAPPIE BLACK CRAPPIE YELLOW PERCH LOGPERCH FRESHWATER DRUM

Scientific Name

M. salmoides
Pomoxis annularis
P. nigromaculatus
Perca flavescens
Percina caprodes
Aplodinotus grunniens

47 M 4 Am sel 6 Solden Shirm 4 Onlys

TABLE 3.3-2 SPECIES COMPOSITION, RELATIVE ABUNDANCE AND BIOMASS OF FISH COLLECTED BY ELECTROFISHING NEAR THE DRESDEN STATION, 1981.

PECIES	NUMBER	PERCENT OF TOTAL NUMBER	WEIGHT	PERCNT OF TOTAL WEIGH
EPISOSTEUS OSSEUS AB LOSA CHRYSOCHLORIS GROSONA CEPEDIANUH AD SOX AMERICANUS VERHICULATUS AD SOX LUCIUS AD SOX HASQUINONGY YPRINIDAE AD ARASSIUS AURATUS AD TIMEPHALES PROMELAS AD OTROPIS CORNUTUS OTROPIS SPILOPTERUS AD OTROPIS SPILOPTERUS AD OTROPIS SPILOPTERUS AD OTROPIS SPILOPTERUS AD OTROPIS SULLAX AD THEPHALES NOTATUS AD THEPHALES VIGILAX AD TARPHODES CARPIO AB TARPIODES CARPIO AB TOTOPUS BUBBALUS AD TOTOPUS BUBBALUS AD TOTALURUS HELAS AD TOTALURUS HORITIS AD TOTALURUS HORITIS AD TOTALURUS HORITIS AD TOTALURUS HORITIS AD TOTOPITERUS SALHOIBES AD TOTOPITERUS SALHOIBES AD TOTOPITERUS SALHOIBES AD TOTOPITERUS SALHOIBES AD TOTOPITERUS GRUNNIENS AD TOTAL TOTAL	1	0.0	0.3000	0.1
LOSA CHRYSOCHLORIS	1	0.0	0.3250	0.1
GROSONA CEPEDIANUN AD	923	40.5	92.6900	29.3
SOX AMERICANUS VERMICULATUS AS	1	9.0	0.0100	0.0
200 MY00111 MIL 200 MY00111 MIL	1	ŏ. ĕ	0.0050	0.0
YPRINIDAE AR	î	ő.ő	A+A0aa	0.0
ASASSTUS AURATUS AD	ē.	0.4	2.3800	0.8
YPRINUS CARPIO AD	192	₿ ∙Ŏ	2.3800 99.0950	31.3
IMEPHALES PROMELAS AD	1	0.0		
OTROPIS CORNUTUS	2	0.1		
(U)KUPIS HUUSUNIUS AD	Ī	V+V		
NOTIONALE ATTRAINATION NO NOTIONALE ATTRAINATION NO	451	19. Ř		
THEPHALES NOTATUS AD	3	0.1		
INEPHALES VIGILAX AD	ī	0.0	<u>~</u>	
ARP X GOLDFISH HYBRID	66	2.9	30.6500	9.7
KOTROPIS LUTRENSIS AD	1	0.0		
ARPIDDES CARPIO AB	20	0.9	7.3000	2.3
ARPIODES CYPKINUS AU	8	0.4	2.6010	0.8
AKTUIDES VELIFEK ATGOTOMIO TOMMEDOGUT AD	Ě	V:1	1.3220	2.3 0.8 0.3 6.4
PTTORIC BURGIUS AN	ากั	0.4	1.5050	1.1
CTIONUS CYPRINELLUS AN	Ťĭ	0.0	1.2500	Λ 4
OXOSTOHA ANISURUN AD	29	1.3	11,2560	3.6
IDXOSTONA ERYTHRURUM	48	2.1	11.2560 8.4900	2.7
MOXOSTOMA MACROLEPIDOTUM AD	26	1.1	4.9110	1.6
IQXOSTOMA SP AD	1	0.0	n 4456	
CTALURUS MELAS AN	2	Ň, Ť	0.1170	0.0 0.0
CTALUNUS MATALIS AV	ć	0.4	9.4270	2.7
CHEDROS PORCINIOS MA	í	0.0	0.0520	ō.6
TORONE CHRYSOPS AD	Ź	0.1	0.4600	6.1
ORONE MISSIPPIENSIS AD	5	0.3	0.3390	0.1 0.2 1.1
HBLOPLITES RUFESTRIS AD	В	Q+4	0.9000	0.2
EPONIS CYANELLUS AD	192	8.4	3,5240	1+1
LFUNIS GIBBOSUS AD	7	0+4 0-1	0.2350	0.1
EMUNIS HUMILIS AD EDONIO NACENCAS AD	101	V+1	010200 2.3000	V.V A.7
TERNATERIS DALAMAN GIORNALIS AN	53	3.3	5.3770	3.5
ICROPTERUS SALHOIDES AD	31	1.4	7.3120	0.7 1.7 2.3
OMOXIS ANNULARIS AÐ	-6	0.3	0.3400	0.1
OMOXIS NIGROMACULATUS AD	1	Õ→Ō	0,0320	0.0
EPOMIS HYBRID	4	0.2	0.0910	0.0
ERCINA CAPROUES AD	1	9.0	10 0076	
PLUPINOTUS GROWNIENS AD	47	2.1	13,9070	6.3

SPECYES COMPOSITION, RELATIVE ABUNDANCE AND BIOMASS OF FISH COLLECTED BY SEINING PERCNT OF OTAL WEIGHT 0.001500 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 0.00200 WEIGHT NEAR THE DRESDEN STATION, 1981 3.3-3 SPECIES ABLE

SPECIES COMPOSITION, RELATIVE ABUNDANCE AND BIOMASS OF FISH COLLECTED BY GILL NETTING MEAR THE DRESDEN STATION, 1981. 3.3-4 TABLE

TOTAL NUMBER, AVERAGE CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 1981. 3,3-5 IABLE

		;								 	;										<i>!</i>
	3	Location 1	-	75	Location	2	Ľ	Location	5	Log	ation	ا و	2	Location	7	100	ation	6	10	Location	! (عد
		CPE	ъq	2	ÇPE	ا جو	2	3	85	\$	CPE	용무	2	3dC	9-5	8	CPE	g-e	%	CPE	6-9
LONGNOSE GAR	ı	ι	r		1	ı	ı	1	I		0.4	0 .	•	ć		ľ	,	ť	,	ı	ł
SKIPJACK HERRING		1		•	Ł		ť	ı	1		0.4	0.1	r	r		r	ı	1	1	r	ı
GIZZARD SHAD	7.1	43.9	3 8.4		95.0	63.6	161	95.7	53,5		37.0	18.8	152	87.1		8	56.1	42.1	ij.	79.4	54.9
NORTHERN PIKE		ı İ			ı	1	ı	ı	ı		ı		1	ė		ľ	ı	ť	-	9.0	4.0
GRASS PICKEREL	 ,	9,0			•	•	ł	ŧ	,		ι	ť	t	r		r	t	1	1	r	ľ.
MUSKELLUNGE	Н	9.0	5.0	ı	r	ı	I	ı	ı		, ,	,	ı	ŧ		ł	,	,	1	ť	ť
CYPRINIDAE	1	ı,	ł	ł	,	•	ť	r	ŕ		9.0	0	ı	ı		ı	1	•	11	. '	1 ,
60t.DFISH			6			' '	' !	۱ ¦	' ;		1.7	4.0	1	,		٠,	, ;	, ,	m į	1.7	7.5
CARP	808	16.3	e e e e	4	ะ เก็บ	0.0	7.	e y	ب ب د د		22.3	0 L	e k	4.12		# #	4.62	17.5	<u> </u>	5 5 6 6	5.5
CONTEIN CRIMER	8 '		£ ,	÷ -	, u		: '	•			0.0	90	3 '			9 '	9	14.0	3 .	, .	1.7
SPOTTATI SHINER	r	1	r	1 1	,	,	1	1	•			, '	1	9.0		ť	,	t	ſ	ſ	ſ
COMMON SHINER			,	ŧ	ť	,	ľ	г	r		7	0.3	1	,		ł	ť	ť	ı	ť	ť
RED SHINER	r	1	,	r	r	ı	ı	I	ı		9.0	0.1	,	ť		ſ	,	r	١	ı	ı
DLUNTNOSE MINNON	•	ţ	,	2	1.1	0.8	t	ι	t		1	ı	ı	1		-	9.0	0,4	ť	ŧ	,
FATHEAD MENNOW	t	,	ŕ	1	ſ	t	r	r	r		ı	ı	ı	1		H	9.0	0.4	ť	τ	t
BULLHEAD MINNOW	r	ı	ı	-	9.0	0.4	١	4	,		ł	,	ľ	ſ		r	r	ı	1	•	4
CARP x GOLDFISH	R	16.4	13.6	•	ŧ	t		6.0	0.3		1.7	0.4	۲.	4.0		13	7.4	5.5	13	7.4	3.
RIVER CARPSUCKER	ŁΩ		2.5	7	:	6.0	4	2.3	1.3		4.0	1.0	П	9.0		Н	0.6	0.4	1	•	ı
QUILLBACK	-	9.0	0.5	г	9.0	0.4	-	0.2	0.3		1.7	٠, د	ı	ı		rv.	1.1	0.8	ι	r	ŕ
HIGHFIN CARPSUCKER	-	9.0	0.5	ı	•	ı	ı	ı	ı		0.6	0.1	ı	¢		r	r	ı	I	ı	ı
SKALLMOUTH BUFFALO	_	9.0	0,5	ı	ı	ı	ı	ı	4		2.7	0.1	1	9.0		n	1.7	1,3	ı	ı	•
BIGMOUTH DUFFALC	2 '	4		1 :	ı İ	•	1	i j	1		÷.		ť	۲ '			' '	. ;	ł (ι;	1
STLVER REDHORSE	Ч ″ (~. ~.	9.1	Ξ,	φ.	un i	r-, t	4,	67.		' '	١,	⊷ ,	9.0			ب 0	9.4	M C	1.1	э, Э,
SHORTHIAD REDHORSE	ተ ተነ	2.0	or r	on L	o c	w,	m ¢	1.7	0.5		9.0	0.1		00			ې د	* •	+	40	4 C
WILTE SINCKED	~	÷	'n	n	5.3	P. 7	7-	00	700		1 -		n 1	F .		t ı	, ,	;	7 4	0 0	, ,
REDHORSE CO				,	1 4		-						' '	' '			1	ė	,	; ;	; ;
CHANNEL CATEISH	ľ	C	ł	LC.	2.9	2.0	• (,	; '		r	r	_	9.0		m	1.7	1.3	ť	ι	r
BLACK BILLINEAD	1	9.0	0.5	1	1	1	ı	ı	1		•	ě	-	9.0		1	ı	ı	1	1	¢
YELLOW BULLHEAD	ť	r	¢	1	1	•	•	ſ	ſ		1:1	0.3	ı	ı		į	ı	ı	ť	٢	r
FLATHEAD CATFISH	ı	ı	ı	1	ı	ı	1 -	ı	1		9.0	0.1	ŧ	ť		٢	r	г	1	'	{
WHITE BASS	•	,	ſ	•	((н (S .	٠. د.		r	ı	1			•	t	,	П	0.B	0.4
TELLOW SASS	ı	ı	ı	et i	71		N C	: :	o,		ı		1 4	· :		r	ſ	r	г	1	ı
KOCK BASS	•	ι	,	· .		7.	m	1.7	1.0		, - }	, 6	N C	1:		١	, ;	ı [, 6
CARTE SUMPISH OTHOR HEAD	г	ı	ı		200	10	1	٢	r		e v	0.12	η,	P		3 '	ò		7	1.1	Ç.,
CONTRIBUTED SHEETSH	1 1	1 4	1 1		9 (0		1 (r (1 /		· '	;	-			-	2	2	'	, ,	· :
BLUEGILL	Н	9.0	3.0	• (,	, ,	·	9.0	0.3		47.9	11,7	160	4		, IVS	1.7		_	9.0	0.4
SUNFISH HYDRID	-	9.0	0,2	ı	ı	,	1	1	ł		1.6	0.4	ı	ι		۲	ħ	ı	1	r	г
LANGEMOUTH BASS	QI (Ξ,	6.0	(6	1	٠,	1 4	1 6	Ċ		٠,٠ د.	جار داد	er e	† †¢		- ;+	2.3	,	- ;	9.0	4.0
SENTENNE DESIGNATION OF THE PROPERTY OF THE PR	٧	1:1	<u>.</u>	71	1.5	,	п	£.3	דים		•	7	+	r.7		•	÷	ó	=	?	-

TABLE 3.3-5 (CONT.)

	7	Location 1	1.1	ļ	Location 2	2	Loc	Location 5	L.		Location 6	9	Loc	Location 7	-	Loc	Location 9	<i>ው</i>	Ę	Location 18	\$
	%	No. CPEª) 		SE	8-2	ا <u>چ</u>	핆	84 	일	믦	8-5	i : 울	뿔	te	일	핅	54	일	뜅	8
PPIE	•	4	ı	г	r	,	ť		•	r	ť	ť	ė	ı	ſ	Н	9.0	0	ι	ı	r
PPIE	1	9,0	0.5	ſ	ı	,	-	9.6	0.3	٣	1.7	6.4	N	1:1	9.0	٨	1:1	6.9	г	ι	١
	1	r	,	ı	ı	•	-	9.0	ф.	ı		ı	1	r	ı	•	1	ľ	,	ı	,
FRESHWATER DRUM	4	2,3	1.9	.	0.0	5.5	œ	4.6	5.6	ч	9.0	0.1	Ξ	6.3	3.7		4.0	3.0	N	1 .1	9.0
BER	213			253			305			730			295			232			253		
RUMBER OF SPECIES TOTAL CPE		120.6		_	44.6			178.9			410.1			9,691			133.4			144.6	

(a) Represents average CPE for seven sampling dates.

TABLE 3.3-6 TOTAL NUMBER AND RELATIVE ABUNDANCE OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 1981

<u>Species</u>	Locat No.	tion 1	Loca No.	tion 2	<u>Loca</u> <u>No</u> .	tion 5	Locat <u>No</u> .	tion 7	Loca No	tion 9	Locat No.	ion 10
GIZZARD SHAD	4	5.3	6	5.9	25	24.5	163	78.0	3	7.3	29	39.7
NORTHERN PIKE	-	-	ĭ	1.0	2-3		100	.0.0	-	-		33.1
- CARP	4	5.3	_	-	3	2.9	4	1.9	2	4.9	11	15.1
_EMERALD SHINER	59	77.6	64	62.7	61	59.8	13	6.2	9	22.0	20	27.4
- SPOTTAIL SHINER ()	1	1.3		_	-	_		_	_		2	2.7
SPOTEIN SHINER	î	1.3	3	2.9	_	_	_	-	_	_	_	
SAND SHINER	-		Ĭ		-	_	1	0.5	_	_	_	_
RED SHINER	_	_	1	1.0	_	_	_	-	_	_	_	_
SUCKERMOUTH MINNOW	_	_	ī	1.0	_	_	-	_	_	_	_	_
· BLUNTNOSE MINNOW	-	_	3	2.9	_	-	_	-	_	_	1	1.4
-BULLHEAD MINNOW	1	1.3	5	4.9	_	_	1	0.5	_	_	_	
· CARP x GOLDFISH	1	1.3	_	_		_	_	_	_	_	_	_
RIVER CARPSUCKER	_	_	1	1.0	2	2.0	-	_	_	_	1	1.4
SMALLMOUTH BUFFALO	_	-	1	1.0	_	-	_	_	_	-	-	_
WHITE SUCKER	_	-	-	_	_	~	-	-	_	-	1	1.4
CARPOIDES sp	1	1.3	-	_	_	-	-	_	_	-	-	_
- CHANNEL CATFISH	-	-	5	4.9	_	-	-	-	1	2.4	-	-
BLACK BULLHEAD	-		-	-	-	_	-	-	1	2.4	-	_
TROUT -PERCH	-	_	-	-	-	-	-	-	2	4.9	-	_
GREEN SUNFISH	-	-	-	_	· _	-	3	1.4	1	2.4	-	-
ORANGESPOTTED SUNFISH	-	-	4	3.9	2	2.0	4	1.9	-	-	-	-
BLUEGILL	-	-	-	-	1	1.0	3	1.4	_	-	1	1.4
SMALLMOUTH BASS	-	-	1	1.0	-	-	2	1.0	-	-	2	2.7
· LARGEMOUTH BASS	2	2.6	-	-	-	-	1	0.5	-	-	2	2.7
WHITE CRAPPIE	1	1.3	1	1.0	3	2.9	-	-	1	2.4	2	2.7
BLACK CRAPPIE	1	1.3		-	1	1.0	_	-	-	-	-	-
- LOGPERCH	-	-	1	1.0	_	-	-	-	_	-	1	1.4
YELLOW PERCH	-	-		-	1	1.0	_	-	-	-	-	_
FRESHWATER DRUM	-	-	4	3.9	3	2.9	14	6.7	21	51.2	-	-
TOTAL NUMBER	76		102		132		209		41		73	
NUMBER OF SPECIES	9		16		10		11		9		12	

3-54 4-54

TABLE 3.3-7 TOTAL NUMBER, AVERAGE CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BT GILL NETTING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 1981.

	Loc	cation	<u>1</u>	Loc	ation	2	Lc	ocation.	5		<u>ocatio</u>	<u>n 7</u>	Lac	ation	9	, Lo	ation	10
	No.	€bE¶	<u> </u>	y(o_r_	<u>cpe</u>	<u>*</u>	<u>No.</u>	$\overline{C_{2}E_{\beta}}$. 🧸 ,	<u>No.</u>	<u>CPE</u>	<u>.%_</u>	Mo.	CPEC	<u> , , , , , , , , , , , , , , , , , , ,</u>	No.	CPE	<u>""</u> .
10NGNOSE GAR	7	(1	6.7	5	<1	13.2	-	_		2	<1	1.2	-	_	-	-	-	-
SKIPJACK HERRING	-	-	-	-	-	-	2	(1	<1.0	-	-	-	-	-	-	-	-	-
CIZZARD SHAD	6	< 1	5.7	8	<î	21.1	27	2	33.3	7	<1	4.1	4	<1	<1.0	-	-	-
GOLDEYE	1	<1	1.0	3	<1	7.9	13	1	16.7	5	<1	2.9	-		-	-	-	-
CARP	79	Ą	57.1	8	<i< td=""><td>21.1</td><td>30</td><td>2</td><td>33.3</td><td>110</td><td>6</td><td>60.0</td><td>20</td><td>2</td><td>100.0</td><td>48</td><td>3</td><td>100.0</td></i<>	21.1	30	2	33.3	110	6	60.0	20	2	100.0	48	3	100.0
CARP X GOLDETSH	22	1	14.3	-	-	-	-	-		5	<1	2.9	-	-	-	l	a	$\langle 1.0 \rangle$
RIVER CARPSUCKER	1	<1	1.0	_	-	-	2	<1	<1.0	9	1	10.0	-	-	-	3	⟨Ι	<1.0
QUILLBACK	-	-	-	-	-	-	1	<1	<1.0	2	q	1-2	-			•	-	-
SMALLMOUTH BUFFALO	3	<1	2.9	-	-	-	2	a	<1.0	3	<1	1.8	1	<1	<1.0	1	<1	<1.0
SILVER REDHORSE	-	-	-	-	-	-	2	α	<1.0	3	<1	1.8	-	-	-	-	-	-
SHORTIJFAD REDHOASE	5	<1	4.8	3	<1	7.9	11	1	16.7	7	<1	4.1	-	-	-	-	-	-
GOLDEN REDHORSE	-	-	-	-	-	-	-	-	-	1	(I	0.6	-	-	-	-	-	-
WHITE SUCKER	1	<1	1.0	-	-			-		_	-		-	-			-	
CHANNEL CATFISH	1	<1	1.0	ı	<1	2.6	4	(1	<1.0	5	<1	2.9	Ï	(1	<1.9	1	G	(1.0)
BLACK BULLHEAD	J	<1	1.0	-	-	-	-	-	-		_	-	1	<1	<1.0	-	-	-
YELLOW BIRLINEAD	-	-	-	_	-		-	-	-	-	-	2 -	-	-	-	-	-	-
WHITE BASS	-			4	<1	10.5			-	b	ď	3.5	-	-		-	-	-
YELLOW BASS	2	<1	1.9	Ξ			4	\mathbf{a}	<1.0	7	<1	0.6	1	<1	<1.0	-	•	_
ROCK BASS	-	-		1	α	2.6	-	-		:	1	0.6	-	-	•	_	-	-
WHITE CRAPPIE	į	<1	1.0	1	<1	2.5	1	\mathbf{a}	<1.0	i	$\frac{1}{2}$	0.6	-	_	-	•	-	_
BLACK CRAPPIE	- .		-		-	-	_		- - 1 0	2	<1 <1	0.6	-	-	-	-	_	-
FRESHWATER ORUM	1	<1	1-6	4	<1	10.5	2	₹1	<1.0	2	ζ1	1.2	-	-	-		_	7
TOTAL NUMBER	13i			38			101			170			28			54		
NUMBER OF SPECIES AVERAGE CPE	13	7		30	2		13	6		16	10		6	2		4	3	

⁽a) Represents average CPE for 7 sampling dates. (b) Represents average CPE for 6 sampling dates. (c) Represents average CPE for 5 sampling dates.

Spec. PHYSICOCHEMICAL MEASUREMENTS RECORDED AT EACH FISH SAMPLING LOCATION IN THE DRESDEN POOL NEAR THE DRESDEN STATION, JUNE 1981 103 Location b Sat. Spec. Cond. 460 Sat. Location 5 8 Spec. Location 2 Sat. 8 9 Spec. 780 Location 1 Sat 섫 85 25.5 Surface 0.5 0 4.5 1.0 2.0 3.0 3.5 2.5 TABLE 3.3-B 24 June 23 June Date

Depth (iii) T Dig. Sat. Cond. Dig. Sat. Cond. T Dig. Sat. Cond. Dig. Cond.	,			Location 7	T nor			Locat	Location 9			Locat	Location 10	
Surface	Date	Dep th	-	0	Set.	Spec. Cond.	⊢	0.0	şat.	Specification	-	0.0	\$3.	5500 1000 1000 1000
0.5 24.0 8.2 96 450 <t< td=""><td>23 June</td><td>Surface</td><td>1</td><td>;</td><td>1</td><td>;</td><td>23.5</td><td>7.9</td><td>92</td><td>465</td><td>24.0</td><td>6.8</td><td>80</td><td>730</td></t<>	23 June	Surface	1	;	1	;	23.5	7.9	92	465	24.0	6.8	80	730
1.0 23.2 7.9 91 23.0 6.9 79 2.0 22.5 7.9 90 22.8 6.9 79 2.5		6.5	24.0	8.5	96	450	ŗ	1	;	1	ł	1	1	١
2.6		0.1	;	1	;	1	23.2	7.9	91	1	23.0	6.9	79	,
2.5 -		2,0	ł	ł	1	į	22.5	7.9	8	;	22,8	6.9	79	1
3.0 22.5 7.9 90 22.8 7.0 80 3.5 22.2 7.8 69 4.0 <		2.5	1	1	ì	;	1	ı	ľ	1	!	;	t F	ł
3.5 22.2 7.8 69 80 4.5 22.5 7.1 81 0.5 25.3 8.3 99 24.0 7.1 64 25.0 7.2 86		3.0	1	ı	1	:	22.5	7.9	8	;	22.8	7.0	80	1
4.0 22.5 7.0 80 4.5 22.5 7.1 81 0.5 25.3 8.3 99 24.0 7.1 64 25.0 7.2 86		3,5	ì	1	;	1	22.2	7.8	68	1	1	١	1	ŧ
4.5 22.5 7.1 81 0.5 25.3 8.3 99 24.0 7.1 64 25.0 7.2 86		4.0	ţ	1		1	1	1	1	;	22.5	7.0	99	1
0.5 25.3 8.3 99 24.0 7.1 84 25.0 7.2 86		4.5	;	ţ	t	!	1	1	!	i	22.5	7.1	81	;
	24 June	0.5	25.3	8.3	56	I	24.0	7.1	æ	i	25.0	7.2	86	i

PHYSICOCHEMICAL MEASUREMENTS RECORDED AT EACH FISH SAMPLING LOCATION IN THE DRESDEN FOOL NEAR THE DRESDEN STATION, JULY 1981. 3.3-9 TABLE

	Spec. Cond.			613												199	1						
	ائدا			- 56												45							
Location 6	8			7-1													1						
	⊢ :			31.4												30.7							
	Spec.	619	ı	873	ı		t									5/17	1						
S.	Sat.	8	ı	8	ı	86	,	99	84	ı	ı	٠	ı	•		6	ı	55	16	•	ı	•	,
Location 5	8	7.4	,	6.	ı	7.1	ı	7.1	7.0	,			1	,		7.6	1	₩.	6.7	ı	ı	,	1
	-	25.2	,	26.5		25.5	ı	25.4	25.4	ı	,	i	ı	,		24,6	ı	22.5	22.6	ı	ı	ı	ı
	Spec.	219	ı	626	ı		ı									547	ı						
n 2	sat.	æ	1	g 9	ı	833	,	83	8	,	₹	\$ 8	•	84		94	ı	ı	93	•	,	ı	1
Location 2	90	7.7	1	7.2	ı	6.9	ı	6.9	6.9	ı	7.0	0.7	1	7.0		7.1	,	,	8.5	ı	ı	,	,
	-	2.6.2	1	56.9	ı	55.6	,	25.5	25.3	1	25.3	25,3	,	25.3		24.3	1	,	22.3	,	,	,	1
	Spec. Cond.c	738	1	711	ı		ı									773	ı						
1 10	sat.	69	1	99	1	11	ı	77	77	7.7		,	ı	1	1	75	ı	56	72	ı	ı	,	1
Locatío	. <u>000</u> Sat.	5,5	1	6.3	ı	6.1	ı	6.1	6.1	6.1	١	ı	ı	,		5.8	ı	6.5	6.0	ı	ı	,	,
	ėj.	57.5	1	27.7	ı	21.7	,	27.7	27.7	27.7	r	ı	ı	;		27.4	ı	26.0	2.92	ı	ı	ı	ı
	Uepth [m]	0.5	Surface	o.,	1.U	Surface	·.	1.0	2.0	2.5	3.0	4.0	4.5	0.8	Simfaco	0.5	1.0	Surface	0.5	1.0	0°2	3.0	0.4
		6 July														(1)		23 July					

			Location /	/ uo			Location 9	5 60			Location 10	91	
٥	epth			9-2	Speci	:			Spec.			3-0	Spec
·	<u> </u>	۲- ا	qQn	Sat.	Cond	_	8	Sat.	Cond	- !	90	Sat.	Cond
6 ժանչ	6.5	29.4	7-2	95	616	21.12	5.9	75	999	57.6	5.8	73	732
	urface	,	,	ı		1	:	,		26.6	9.6	9	703
	6.5	29.6	7.3	8	623	26.4	7.0	ź	647	,	ı	ι	١
	U~ 1	ı	ı		1	1	ı	ı	1	26.5	5,5	89	•
8 July S	urface	29.5	5.6	8		27.1	0.9	£.		27.2	5.1	3	
	0,5	28.5	o, o	£		,	1	1		,	ı	ı	
	1.0	1	i	١		27.1	6.9	74		27.1	1.9	Z	
	5.0	ı	,	1		27.1	σ) 49	.73		27.0	5.5	54	
	5.5	ŧ	,	٠		ı	1	,		56.9	5.5	Z	
	3.0	ı	ι	,		27.2	5,5	æ		ı	ı	7	
	9.0		ı	ı		27.2	5.9	Ľ		ı	:	•	
	4 .5	ı	١	ï		27.2	9. 6	72		,	1	,	
	5.0	,	1	ı		ı	,	ı		,		,	
21 July S	urface	ı	,	,		,	,	ı		27.6	1.2	8	646
	0,5	28.6	6.8	97	642	27.5	6.9	81	610	:	ı	,	1
	1.0	ı		ı	ı	ı	,	i	,	9.73	6.5	81	642
23 daly S	urface	27.2	1.1	38		25.1	7.5	88		26.4	6.6	80	
	0.5	76.7	7.5	S			,	:		ı	ı	ı	
	1.0	1	ı	١		24.9	7.5	8		26.3	6.3	11	
	2.0		١	,		24.8	6.9	32		26.3	6.1	₹.	
	3.0	ı	ı	1		24./	9 9	31		26.1	6.0	E.	
•													

(a) Temperature - "C
 (b) Dissolved oxygen - mg/l
 (c) Specific conductivity - umb

PHYSICOCHEMICAL MEASUREMENTS RECORDED AT EACH FISH SAMPLING LOCATION IN THE DRESDEN POOL NEAR THE DRESDEN STATION, AUGUST 1981. TABLE 3:3-10

			Locat	ion 1			-0Ca	tion 2			Locat	S no			Locat	9 110	
Date	Depth	<u>.</u>	400	Sat.	b Sat. Cond.c	-	위	Sat,	T 30 Sat. Cond.	-	8	Sa.	T UO Sat, Cond.	1 BO Sat. C	8	Sat	Spec. Cond.
3 August	. 5.0	27.3	1.6	2	415	22.5	7.2	83	450	22.8	7.4	98	317	30.0	7.2	45	383
4 August	0.5	25.8	⇒ 8,	69	545	23.4	5.4	74	408	23.2	7.2	æ	423				
18 August	9.5	24.4	24.4 5.4	64	669	22.0	1.5	38	683	23.8	7.1	₹	673	\$6.4	н.1	66	999
19 August	9.0	26.4	26.4 6.8	83	829	24.5	9.5	101	929	25.8	÷	•	989				
20 հայցում։	Surface 1.0	25.5	₹.	٠, ١		22.9	* *										

TABLE 3.3-10 (CONT.)

	Dep t h	.	Loca	tion 7	Spec			Loca	tion 9	[—] Spéč.			ion 10	Σμες.
Date	(gn)	<u> </u>	00_	Sat.	Cond.			90 _	<u>Sat</u> .	Cond.		<u>00</u>	<u>Sat</u> .	Cond.
3 August	0.5	27,3	7.2	89	360		25.0	6.8	81	455	25.5	5.6	68	490
4 August	05	27.3	1.2	89	412		25.5	7.0	85	4(5	25.8	6.1	74	540
18 August	0.5	25.1	6.8	81	569		24.9	6.2	74	673	25.5	5.5	67	698
19 August	0.5	25.9	7.1	87	672		24.8	7.0	83	676	25.3	6.4	76	678
20 August	Surface 0.5 1.0 2.0	26.2 26.2 26.1	* - *	-		,	25.3 25.0	6.8 6.8 6.1	82 82 73		25.6 -	- * -	- - -	

⁽a) Temperature - °C

⁽b) Dissolved bxyger - mg/!
(c) Specific conductfy!Ly - pumbos/cm
(d) * - Instrument malfunction

PHYSICOCHEMICAL MEASUREMENTS RECORDED AT EACH FISH SAMPLING LOCATION IN THE DRESDEN POOL NEAR THE DRESDEN STATION, SEPTEMBER 1981. [ABLE 3.3-11

Space.	491			799	
% ¥.	186111			101	
Location 6 00 Sat.	1.1			8.9	
	26.3			21.7	
Spec.	600	1		658 645	601 602 602 -
Sa sa sa Sa ta	93	28	85 	64	70 69 -
Location 5 DO Sat.	8.1	7-8	7.8	5.8 6.8	အတ္က (၂) အတ္က (၂)
	21.6 - 21.2 -	20.8	20.5	20.6	18.8 18,9 18,8 -
Spec.	601 - 601 603	ı		5286	8888 8888 1 1
Satt	89 - 87 87	87	89 88 87 87	901	105 104 104 -
Location 2 Spe 00 Sat. Con	2 - 0 2 2 2 2 - 0 0 0	8.0	20.00 c. c. c. c. c. c. c. c. c. c. c. c. c.	9.4 10.3	10.2 10.1 10.1
- 1		20.4	20.5 19.9 19.8 19.8	18.0 17.7	16.9 17.0 17.0
Spec.		ı	1 1 2 1 1	685	603 603 603
1 % kg	15011	71	85 69 	54 66	28832
Location 1 DO ^D Sat.	6.2	0.9	6.4 6.0	4.8 6.1	6.0 5.5 5.5 5.5
m-	24. 1. 1. 1	23.7	24.2 6.4 75 24.0 6.4 75 23.4 6.0 69	20.4	88.5 88.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.
			Surface 1.0 2.0 3.0 4.0		
	8 September	9 September	10 September	21 September 22 September	23 September

			location 7	7 100	:		Location 9	6 uo	i		Location 10	ол 10	
		-	00	κα ::	Spec. Cond.	F::	8	Se Se	ට නිල ව ා අ	 -	3	βat.	200 500 500
8 September	Surface 0.5 1.0 2.0 2.5		7.3	198111	579	23.5 23.3 -	7.1	83 . 80 	579 579	23.1 22.2 22.1 22.1	5.9 6.1 6.1	සි . පුදිදී	646 - 637 636 636
9 September	ر و د	23.3	6.9	£	·	22.9	7.0	8	ı	22.9	0-9	69	1
18 September	Surface 1.0 2.0 3.0 4.0	23.1 22.8 22.8 -	7.2	- 538		23.0 22.3.0 22.5.5 22.5.5 3.0.0 3.0 3	6.9 6.8 5.7 6.6	78 77 76 76	1 1 1 1 1	23.0 22.5 22.5 22.5 22.5	6.0 6.0 6.9 6.9	医公安多德	1 1 1 1 1
21 September 22 September	0.5	22.3	7.0	8 °C	661 643	21.8	6.9	78	660	22.4	5.4	61 70	677 649
23 September	Simface 1.0 2.0 3.0 4.0	19.5	2.1	88 1 • 1 :	612	19.3 19.5	7.8	88	609 609	19.3 19.5 19.5	7.5	\$P\$ \$P\$ 1	605 605 604 -

(a) Temperature - "C (b) Dissolved oxygen - mg/l (c) Chariff, conductivity

SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 23 JUNE 1981. 1ABLE 3.3-12

	-	9	_	-	•	c	-	•	ц	-	4		-	4	Γ.	-	+4		-	9	9
Species		CPE CPE	 	월 1 일	CPT OF		<u>.</u>	No. CPE	: 	발 일 (오)	Lucation o		No. CPE	5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	9.5	2 2	No. CPE "		No. CPE T	: []	3
Gizzard shad	16	64	41.0	٦	4	3.6	m	12	20.0	13	25	8.8	14	99	41.2	ō	88	٥.6	υĐ	24	89.
Cyprinidae	ŕ	r	r	r	ſ	r	r	1	ı	-	4	0.7	ſ	,	•	•			ŧ	r	ľ
Goldfish	,	4	2.6	1	•	•	•	ł	Ł	m	12	2.0	•	ı	ſ	r	r	r	ſ	4	1
Carp	1 2	P	20.5	-1	4	3.6	•	ł	,	21	84	14.3	寸	16	11.8	~	স্থ	22.6	-	4	4.8
Goldfish x Carp	- 20	겨	S.	r	,	r	1	4	ı	2	20	1.4	ſ	ı	1	,	4	3,2	_	ڻ	4.8
Emerald shiner	e.	6	5.	-	4	3.6	•	•	ı	14	22	4.5	2	20	5.9	7	\$	6.5	7	\$	9.5
Spotfin shiner	r	r	r	ſ	ľ	r	r	1	ł	en	12	2,0	ı	1	•	·	ė	•	ł	ſ.	ť
Bluntnose minnow	ł	r	,		v	3.6	ł	•	•	•	1	•	•	Ł	ŧ	r	r	r	r	t	r
River carpsucker	•	4	,	П	₹	3.6	ŧ	ť	,	ſ	ť	ť	r	r	ſ	-	4	3.5	1	1	•
Quillback	-	4	5.6	7	Ŧ	3.6	ſ	1	1	-	┱	7.0	•	•	•	t	١	r	ľ	ľ	١
White sucker	•	ł	ſ	•	1	1	•	•	•	•	,	•	r	,	r	ſ	ſ	•	m	2	14.3
Silver rednorse	-	덕	5.6	æ	22	9 13	чņ	20	33,3	r	t	ſ	•	•	ŧ		4	3.2	ત્ય	တ	9.5
Shorthead redhorse	ı	r	ſ	ع	24	21:4	-	₽	6.7	1	•	ť	t	r	r	•	•	ŧ	Ł	r	ť
Black bullhead	•	1	•	4	•	•	ł	ľ	,	ť	r	C		4	2.9	•	ł	ť	r	ł	ſ
White bass	•	4	ł	•	,	ŧ		- G*	6.7	r	r	ſ	1	•	•	ť	r	t	-	4	4.8
Yellow bass	1	ſ	1	2	ಹ	7.1	7	œ	13,3	•	í	•	r	ť	r	1	•		ł	r	r
Rock bass	•	4	1	_	4	3.6	•	•	Ł	ł		ť	r.	1	1	•	•	į	r	1	ſ
Sunfish hybrid	-	寸	5.2	ť	,	r	ľ	r	1	-	4	0.7	•	•	ł	r	ľ	1	1	•	,
Green sunfish	•	•	•	7	œ	7.1	•	ť	,	×	144	24.5	7	₹	2.9	-	4	3.2	-	Ŧ	⊕
Pumpkinseed	ł	•	ſ	,	,	ŕ	ŕ	Γ	r	ო	12	2.0	1	4	,	ť	ſ	ſ	ł		•
Orangespotted sunfish	r	r	,	ŕ	ť	r	r	r	r	r	ſ	1	•	Ł	,	-1	4	က လ	1	,	•
Bluegili	•	,	•	4	•		-	다	6.7	3	160	21.2	***	*	2.9	Ç4	E D	6.5	-	4	4 €.
Smallmouth bass	•	•	•	4	•	•	•	•	•	-	4	0.7	-4	÷	5.9	_	4	3.2	0	12	14.3
Largemouth bass	-	•	, 5	1	ł	•	•	1	•	œ	얾	5,4		,	r	ſ	,	ı	ï	r	4
White crappie	r	t	,	,	ŕ	r	r	r	r	r	ı	•	~4	4	2.9	ณ	•	ri Li		ł	ŧ
Freshwater drum	r	r	,	÷	16	14.3	~	ထ	13.3	1	1	ı	6	×	26.5	'n	23	7.6	•	ť	r
Total Number	A			গ্ন			15			147			ਸ਼			ᆏ:			27		
Number of Species	တ	931		12	315		^	5		15	000		G:	¥			13.4		ው	70	
ומרפו כנד		007			977			3			900				7		+ 5			5	

TABLE 3.3-13 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 7 JULY 1981.

			CATION	i "		AT10N	.ī		ATION COC			CATION	
		ND.	CPE,	Z	NO.	CPE	ν, ν	NO.	CPE	%	₩O.	CPE	Z
	LEPISOSTEUS OSSEUS AD DORDSOMA CEPEDIANUM AD	3		- 17.65	- -	_	-			- -	1 2	3 7	1.37 2.74
	ESOX AMERICANUS VERMICULATUS AT	1	ą	5-88		_	-	_	-		٠.	_	-
	EGOX MASQUINONGY	i		5.88	-	_	- 70	-		- 11			
	CYPKINUS CARCIO AD	1	14	23.53	1	4	14.29	1	4	11.11	-		_
	NUTROPIS HUBSONIUS AD	7	7	11.78		_		1	4	11.11	1	3	1.37
	NOTROPIS ATHERINOIDES AD PIMEPHALES NOTATUS AD	_		11:76	1	4	14.29	_		-		_	
	CARD X GOLDFISH HYDRID	3	11	17:65				1	4	11.11	_	_	_
	CARPIQUES CARPID AD	Ĭ	ĵî	17,65	<u> </u>	-	-	_	_		_		_
ω	CARPIODES CYPRINUS AD		_		-	_				_	_		
φ.	ICTIONS BURALUS AD	-	-	-	-	-				-	2.	7	2.74
O1	MOXOSTOMA ANISURUM AD	-		-	1.	4	14.27		-	_			_
	NOXUSTOMA ERYTHRURUM		-	_	-	-		1	4	11.11	-		-
	MOXOSTUMA MACROLEPIDOTUM AD			-	-		- 4.5	1	4	11.11		_	
	TOTALURUS FUNCTATUS AT	-	'	_	1	4	14.29	_	·-	50.00		_	-
	AMBLOPLITES RUPESTRIS AD		_	_	-		_	5	8	22,22	3B	127	ED 05
	LEPONIS CYANELLUS AD LEPONIS GIDDOSOS AD		-			-	_	-		-	1	12/3	$\frac{52,05}{1.37}$
	LEPUMIS HUMILIS AD	_	_		_	_	-	_		<u></u>	•		-
	LEPONIS MACROCHIRUS AD	_	_	_	_		_	٠		_	19	63	26.03
	MICROPIERUS DOLOHIEUI AR	·	_	_	2	8	28.57	3	4	11.11	i	3	1.37
	MICROPTERUS SALMOIDES AD			_			_	-	_		6	$2\bar{0}$	8.22 2.74
	LEPONIS HYBRID		-	_	-	_		٠.	_	-	2	7	7.74
	APLODINOTUS GRUNNIENS AD	-	-		1	4	14.27	-	-	11,11	_	• • •	_
	MOXOSTOMA SP.	-	-			•	-	1	4	11,13	_	_	_
	TOTAL NUMBER	17			7			2			73		
	NUMBER OF SPECIES	Ð			6	60		/	7/		9	247	
	TOTAL CPE		60			58			36			243	

TABLE 3.3-13 (CONT.)

	LO	CATION	7	1.0	CATION		LO	CATION	10
	NO.	CPE	%	NO.	CPE	7.	₩O.	CPE	
CPISDSTEUS OSSEUS AD	_					-	-		
DOROSOMA CEPEDIANUM AD ESOX AMERICANUS VERMICULATUS AD	3	12	9 • 68	4 -	17	18.18	4 -	1.5	19.03
SOX MASQUINONGY				. .				_	
CYPRINUS CARPIO AD	19	72	58.04	14	60	63.64	1	4	4.76
OTRUPIS HUDSDNIUS AD	1	4	3,23	7	-	-			
OTROPIS ATHERINGIDES AD	-		_	i	4	4,55	11	41	52.38
MARPHALES NOTATUS AD MARP X GOLDFISH HYBRID	4	4	3,23	1	4	4.55		_	_
ARPIODES CARPIO AD	_		-			-	_	_	
ARPIUDES CYPRIMUS AD	_	-	_	1	4	4.55	_	_	_
CTIORUS BUBALUS AD	-	-					_		_
IDXOSTOMA ANTSURUM AD	_			-			_	_	•••
OXOSTOMA ERYTHRURUM	3	12	9,68	_		-			-
OXOSTOMA MACROLEPIDUTUM AB		-	-		-	· –	•		-
CTALURUS PUNCTATUS AD	_			_	-	-	-	_	-
MOLOFLITES RUPESTRIS AU	_	_		_					_
EPOMIS CYANELLUS AD	2	Ð	6.45		_				_
CPOMIS GIRBOSUS AD	-	_	_		-	-	_		-
EPONIS HUNTLIS AD	.l	4 B	3.23		_		. <u>-</u>	_	_
EPONIS MACROCHIRUS AD	-		6.45	_		_	4	16	19.05
MICROPTERUS DOLOMIEUL AD HICROPTERUS SALMOIDES AD		_		_	_	_		-	
EPOMIS HYBRID		_		_		_	_	_	_
จ๊ที่เอ๊ที่เพื่อที่มีรักิดีสับพพระพร ลอ	_			1	4	4.55	1	4	4.76
HOXOSTUMA SE	-	-	-		-			-	_
TOTAL NUMBER	31			22			21		
NUMBER OF SPECIES	3 <u>1</u> 7			-2			<u>''5</u>		
TOTAL CIPE	•	124		ū	94		-	84	

TABLE 3.3-14 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 21 JULY 1981.

	三 宴	JOCATION SPE	≈4	93 .	LOCATION NO. CPE	- 4	3 2	LUCATION CPC	\$46 YO	\ \ \ \ \	LOCALTON NO. CPC	40
purdsona cepeblanum ab	ç	112	26,00	40	24	31,50	61	92	38,78	36	144	38,71
CARASSIUS AURATUS AD	1	4	2,68		ı		ı		i	i	ı	
CYPYIMUS CARPID AD	45	1,7	9,00	-	***		כיב	2	19,20	м	≘	
a. m	:	ı	:	i	1		ı	ı	:	I	ı	
NOTEOFIS CORNUTUS	:	I	,	:	ı		I		ı	rv	Ð	
	ı	:	ı	ı	ı		!	:	ı	-	ŕ	
ATHER IN	2	Q)	4,00	!	:		Ci	ဆ	4.08	16	64	
PHALE	1	I	:	-	-		:	1	1	I	ı	
CARP X COLDFISH HYPRID	٥	38	18,00	ı	ţ		:	!	ı	ı		
CARPIDNES CARPIG AD	ru	æ	4,00	ı	:		⊢ .1		6,12	-	4	
CARPIONES CYPRINUS AD	ı	1	1	;	ı		- I	-47	20.0	: Pu	æ	
CARPOTUES VELIFER	_	5	2,00	;	:		1	1	,	1	i	
CATOSTOMIS COMMERSONI AD	ı	1	ı	ı	'			4	2,04	1	1	
TOTIONES BURALUS AU	-	₹	2,00	1	1		: 1			•	4	
MOXESTONS ANTSUREM AN	;	1		(%)	00		r.	8	4.08		1	
ERYTHRUR	, . .	4	2.00	· (* v	-		φ,	i.s	16,33	:	1	
MOXOSTONA HACKOLEPIDOTUM AD	ı	:	1	T-I	4		₩	4	2.04	I	1	
TETALURUS WATALIS AD	i	ı	ı	ı	i		ı	ı	:	ē4	⇔	
ICTALURUS PUNCTATUS AD		I	!	1	I		ı	1	ı	ı	:	
PYCODICIES DETUNNES	ı	!	i	ŗ	ı		i	r	ı		4	
MORONE MISSIFFIENSIS AD	ı	i		ēν	ĊΩ		,	ı	:	:	!	
LEPUMIS CYANELLIUS AD	ı	ı	:		ı		ı	:	ı	11	व *1	
LEPONTS CIVEDSUS AD	ı	i	ı	ı	I		÷	ı	ı	-	<+	
LEPUMIS MACROCHINUS AS	ı	ı		1	•		ı	ı	ı		Ŧ	
MICROPTERUS DOLUMIEUS AD	ı	ı	!	ēv.	80		57		4.08	evi	φþ	
MICRUPIERUS SALMOTORS AD	ı	1	i	!	i		ı	ı	ŗ	•	ı	
FOMOXIS ANNULARIS AD	ı	1	;	ı	ı		H	₹	2,03	L.	갩	
APLODINGTHS BRUNNIENS AD	c i	ဘ	4.00	2	œ.		~	16	B, 16	!	:	
TOTAL NUMBER	8			<u>ئ</u> ا			49			93		
NUMBER OF SPECIES TOTAL CPE	o,	200		ō.	7,6		다	196		15	372	
; ,					,							

		(CONT.)
1 5 5 1	וגר ני ני	4.42(18)
1 44 (4)	4 4-10	
	0 0 0 - 1 1	B 400001 1 1 1 1 1

			CATION	7		i0	CATION	9		MOITA	10
		МО.	CPE	χ	i	НΟ.	CPE	7,	NO.	CPE	74
	DOROSOMA CEPEDIANUM AD	담	32	29.63		11	54	32,56	3	12	8.11
	CARASSIUS AURATUS AD CYPRINUS CARPIO AD	3	12	11, 1		1	44	25.58	13	$\overline{52}$	35,14
	PIMEPHALES PROMELAS AB NOTROPIS CORNUTUS	<u></u>				1 	4	2.33	. .		
	NOTROPIS SPILOPTERUS AD NOTROPIS ATHERINOIDES AD	3	12	нан		4	16	9.30	_ 3	12	8.11
	PIMEPHALES VIGILAX AD CARP X GOLDETSH HYERID	2	- 8	7.41		-	-	-	-	24	16.22
	CARPIDDES CARPIO AD CARPIDDES CYPRINUS AD					_	-	_	_	_	_
	CARPOIDES VELIFER CATOSTOMUS COMMERSONI AD	_				-	_	_	_	-	_
	TETTORUS BUBALUS AD	1	4	3.70		3	12	6.78		-	
	MOXOSTUMA ANISUROM AU MOXOSTUMA ERYTHRURUM MOXOSTUMA ANISON ESTROTUM AD	1	4	3.20				-	7	28	18.92
	MOXOSTOMA MACROLEPTDOTUM AD ECTALURUS NATALIS AO	-		 -		=			2	8	5.41
,	IDYALURUS PUNCTATUS AD EYLONICTIS OFTVARIS	1 	4	3.70		3	12	4.98		_	<u>-</u>
ò	MORONE MISSEPPIENSIS AD EEPUMIS CYANELLUS AD	- 6	24	22,22		$\hat{\mathbf{z}}$	8	4,65	 1	4	2.70
	LEPONIS GIBBOSUS AN LEPONIS MACROCHIRUS AD	1	 4	3.70		-	-	-	-	- .	-
	MICROPTERUS DOLOMIĒUI AD MICROPTERUS SALMOIDES AD	Ξ.	-			3 2	12	6.98 4.65	1_	4	2.70
	POMOXIS ANNULARIS AD AMLOMINUTUS GRUNNIENS AD	<u>i</u>	4	3,70		6			- 1	- 4	2,70
	HKCORINGIOS DEGNATURES HIN	_		·			_		1	٦	2170
	TOTAL NUMBER NUMBER OF SPECIES	27 q				43			37 8		
	TOTAL CPE	,	108			7	1.72		o	14B	

30<u>-</u>88

TABLE3%3-15SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION NEAR THE DRESDEW STATION, 3 AUGUST 1981.

		NO.	ATION CPE	1 ×	NO.	ATION CPE	2 %	NO.	CATION CPE	5 %	LO: NO∙	CATION CPE	6 %
	DOROSOMA CEPEDIANUM AD	1	4	10.00	1	4	11.11	7	29	77.78	27	108	37.50
	CYPRINUS CARPIO AD	3	12	30.00	_	-	-	_	-	-	4	16	5₊56
	NOTROPIS ATHERINOIDES AD	1	4	10.00	1	4	11.11	_	_	_	22	88	30.56
	CARP X GOLDFISH HYBRID	ĭ	4	10.00	_	-	-	-	₩	-	~	-	-
	CARPIODES CARPIO AD	_	_	-	-	-	-		-	-	5	20	6.94
	CARPIODES CYPRINUS AD	_	_		_	-	-	_	-		-	-	
	ICTIOBUS BUBALUS AD	-	-	-	- :,	_	-	_		***	í	4	1.39
نبا	MOXOSTONA ANISURUM AB		-	_	1	4	11.11	_	-	-	_	-	-
က်	MOXOSTOMA ERYTHRURUM	2	8	20.00	_	-	-	-	-	-	-	-	-
G	ICTALURUS PUNCTATUS AD	-	4-	-	1	4	11.11	_	-	-	_	_	_
	AMPLOPLITES RUPESTRIS AD	-	-	_	-	••	-		**	-	-	-	
	LEPOMIS CYANELLUS AD	-	-	_	-	-	-	-	-	-	7	28	9.72
	LEPONIS GIBBOSUS AD		-	-	-	_	-	-	-	<u></u>	1	4	1.39
	LEPONIS MACROCHIRUS AD	1	4	10.00	-	_	-	-	-	-	3	12	4.17
	MICROPTERUS DOLOMIEUI AD		_	-	1	4	11.11	_	-	-	1	4	1.39
	NICROPTERUS SALMOIDES AD	_	_		_	_	-	_	-	-	1	4	1.39
	POMOXIS ANNULARIS AD	1	4	10.00	-		-	_	_		_	-	-
	APLODINOTUS GRUNNIENS AD	_	_		4	16	44.44	2	8	22+22	_	_	<u></u>
	TOTAL NUMBER	10			3			9 2			72 10		
	NUMBER OF SPECIES	7			6			2			10		
	TOTAL CPE		40			36			36			288	

TARLE	3.3-15	LOWER	١
IMDLE	a.a-ja	TOTAL NAME OF	

			-							
		ко. Г.О	CATION CPE	7 2	LD(CATION CPE	9 %	1.00 NO.	CATION CPE	10 %
	BOROSOMA CEPEDIANOM AD CYPRINUS CARPIO AD	7 6 2	30 26	27.17 25.00	20 4	80 16	52.63 10.53	5 1	20 4	45.45 9.09
	NOTROPIS ATHERINGIDES AD CARP X GOLDFISH HYBRID CARPIODES CARPIO AD	2	9 -	8.33	3 2	12 8	7.89 5.26	2	B	18.18
	CARPIODES CYPRINUS AD ICTIOBUS BUBALUS AD	-	-	- -	1_	4	2.63	- -	-	-
	MOXOSTOMA ANISURUM AD MOXOSTOMA ERYTHRURUM	1	4	4.17	- 4	16	10,53	$\frac{-}{2}$	8	18.18
	ICTALURUS PUNCTATUS AD AMBLOPLITES RUPESTRIS AD LEPOMIS CYANELLUS AD	1	- 4 9	4.17 8.33	. -	<u>-</u>	 -	_	_	-
	LEPONIS GIBBOSIS AD LEPONIS MACROCHIRUS AD	3	13	12.50	- 1	_ 4	2.63	- -	-	-
	MICROPTERUS DOLOMIEUI AD MICROPTERUS SALMOIDES AD	_ 1	4	4.17	-	-	_	- 1	4	9.09
	POKOXIG ANNULARIS AD APLOTINOTUS GRUNNIENS AD	<u></u>	4	4.17	3	12	7.89	_	-	_
٥	T									
2	TOTAL NUMBER NUMBER OF SPECIES TOTAL CRE	24 9	103		38 8	152		11 5	44	
									,,	

TABLE 3.3-16 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT(FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 18 AUGUST 1981.

LOCATION 6 NO. CPE %
23 92 10+09
- T- M
-
-
157 628 68,26
1 4 0.43
1 4 0,43
<u> </u>
_
31 124 13,48
10 40 4,35
6 24 2.61
-
1 4 0.43
230 8 920

TABLE 3.3-16 (CONT.)

		CATION	7	 	CATION		LOCATION 10			
	ΝΟ,	CFE	΄ χ	MO.	CPE	ź	אם₊"	CPE	10 %	
BOROSOMA CEPEDIANUM AD	27	108	75.00	7	28	58.33	21	84	51,22	
ESOX LUCIUS AD	_	-	-	_	_	-	1.	4	2.44	
CARASSIUS AURATUS AD							1	4	2.44	
CYPRINUS CARPIO AD	2	8	5,54	2	8	16.67	1	4	2.44	
NOTROPIS ATHERINGIDES AD	1	4	2.78	_	_		5 2	20	12.20	
CARP X GOLDFISH HYBRID	1	4	2.78	2	8	16.67	2	8	4.88	
CARPIDDES CARPID AD	_	-	-	•	_	_	_	_	-	
CARPOIDES VELIFER CATOSTOMUS COMMERSONI AD	-	_		-		_			n	
MOXOSTOMA ANISURUM AB	_	_		•-		-	1	4	2,44	
NOXOSTONA ERYTHRURUM	- 1	4	2,78	_	_	•		78	10.00	
MOXOSTOMA MACROLEPIDOTUM AD	+	7	2.78	_	-	_	5 3	20	12.20	
ICTALURUS PUNCTATUS AD	1	4	2+/8	-	-	m.1	•	12	7.32	
AMBLOPLITES RUPESTRIS AD	_	_	_	_	_	_	_	~	_	
LEFOMIS CYANELLUS AD	ī	4	2.78			_	_	_		
LEPOMIS GIBBOSUS AD	<u> </u>	-	21/0	_	_	_	_	_	_	
LEPONIS MACROCHIRUS AD	_	_	_	_	_	_	_	_	-	
MICROPTERUS DOLOMIEUT AD	2	В	5,54		_	-	- 1	4	2.44	
MICROPTERUS SALMOIDES AD	-	_	2120	1	4	8.33	- 1	7	2177	
PERCINA CAPRODES AD	_	_	_	_		0.00	-	-	_	
APLODINOTUS GRUNNIENS AD	_	_	_	_	_	_	_	_	_	
TOTAL NUMBER	36			12			41			
NUMBER OF SPECIES	8			4			10			
TOTAL CPE		144			4B			164		

TABLE 3.3-17SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 8 SEPTEMBER 1981.

	LOCATION 1		1.87	LOCATION 2			CATION	5	LOCATION 6			
	HO.	CPE	1 2	Nū.	CPE	%	. 40.	CPE	7,	₩0.	SPE .	° %
ALOSA CHRYSOCHLORIS DOROSOMA CEPEDIANUM AD CARASSIUS AURATUS AD	10	40	28 <u>.</u> 57	38 -	15 <u>2</u>	- 67.84	15	64 -	72,73	i 12	4 46	2.38 28 <u>.</u> 57
CYPRINUS CARPIO AD NOTROPIS SPILOPTERUS AD	 ij	16	11.43	_ 1	4	1,79	2	8	9.09	7	28	16.67
NOTROPIS ATHERINOIDES AD PIMEPHALES NOTATUS AD	4 	16	11:43	3	12	\$156	2	8	9.09 ~	1_	4	2.38
CAFF X GOLDFISH ÄYBRID CARPIODES CARPIO AD ICTIORUS DUBALUS AD	7	28	20,00	-	-:- 4	1.79	1	- 4	4.53	1	. ģ —	2,38
ICTIOBUS CYPRINELLUS AD	-		- -	_	. 	-	- .	-	-	1 1	4	$\frac{2.38}{2.39}$
MOXOSTOMA ANISURUM AD MOXOSTOMA ERYTHRURUM NSXOSTOMA MACROLEPIDOTUN AD	3	9 12 4	5.71 8.57 2.86	2 2	- 8 8	3.57 3.57	- -				_	_ _
ICTALURUS NELAS AD TOTALURUS PUNCTATUS AD	i 	4	2.86	- 2	0 - C	3.57	<u>-</u>	-	_	_		-
AMBLOPLITES RUPESTRIS AD LEPOMIS CYANELLUS AD		_		1 2	<u>"</u>	3,57			_	12	- 48	28+57
LEPOMIS GIBBUSUS AD LEPOMIS HUMILIS AD	-	-	_	_ 1	4	1,79		_	_	2	8	4.76 -
LEPONIS MACROCHIRUS AD HICROPTERUS DOLONIEUI AD MERCOTERUS SALVARMES AD	1	4	2_86	$\frac{1}{2}$	8	3+57	1	4	4.55	2 1	4	4.76 2.38
NICROPTERUS SALMOIDES AD APLODINGTUS GRUNNIENS AD	2	ΰ	5.71	$\ddot{2}$	6	3,57	-		-	<u>1</u>	-	2,39
TOTAL NUMBER :	35			56			29			42		
NUMBER OF SPECIES TOTAL OPE	35 10	140		54 11	224		2 <u>2</u> 5	88		12	168	

TABLE 3.3-17(CONT.)

	10	CATION	7	1.0	CATION	9	LO	LOCATION 10		
	NO.	ርዖፎ	7.	МО •	CPE	7,	MO.	CFE	7.	
ALOSA CHRYSOCHLORIS	_		_	-	_	_	_	_	_	
DOROSOMA CEPEDIANUM AD	3 9	152	73.08	5	24	35.29	31	124	93,78	
CARASSIUS AURATUS AD	-	-	·-	-		-	<u>i</u>	4	2.70	
CYPRINUS CARPIO AD	1	4	1.92	1	4	5,88	2	8	5.41	
NOTROPIS SPILOPTERUS AD NOTROPIS ATHERINDIDES AD	$\bar{2}$	8	3.85	2	- 9	11.76	_			
PIMEPHALES NOTATUS AD	<u> </u>		2.60	<u></u>	13 4	5.88		_	_	
CARP X GOLDFISH HYDRID	1	4	1.92	1	-	J.DD		_	_	
CARPIONES CARPIO AD	-	-	1172	_				_	_	
ICTIONS BURALUS AD		_	_	_	_	_	_	15	_	
ICTIONUS CYPRINELLUS AD	_		_	_	_	_	_		_	
MUXOSTOMA ANTSURUM AT	-		_	_	_	_	_			
MOXOSTONA ERYTHRURUM		_	_				1	4	2,70	
MOXOSTOMA HACROLEPIDOTUM AD	_	-	_	1	4	5.88	i	4	2.70	
ICTALURUS MELAS AD	_	_	n=	-	_	_	=		••	
ICTALURUS PUNCTATUS AD		-	-	**	***	_			_	
AMBLOPLITES RUPESTRIS AD	1	4	1.92	_	_	_	_	-	15	
LEPOMIS CYANELLUS AD	- 6	24	11.54	3	12	17,65	_	-	_	
LEPONIS GIBBOSUS AD	_	41	**	_	_	_	_	_	-	
LEPOMIS NUMILIS AD	_	-	_	_		-		-	_	
LEPONIS MACROCHIRUS AD	1	4	1,92			_	-	-	-	
MICROPTERUS DOLOMIEUI AD	1	4	1.92	3	12	17.65	1	4	2.70	
MICROPTERUS SALMOIDES AD	_	-		_	_	-	_	-	-	
APLODINOTUS GRUNNIENS AD	1	4	1.92	_	_	_	1	_	-	
TOTAL NUMBER	52			17			37			
NUMBER OF SPECIES	25			15			6			
TOTAL CPE	-	208		•	86		-	14B		

TABLE 3.3-18 SPECIES COMPOSITION, CATCH -PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 21 SEPTEMBER 1981.

		1. 00 ₩0+	CATION CPE	i %	NO+	CATION CPE	2 X	٤٥ ٨٥.	CATION CPE	5 z	∟Ծ Nō,	MOLTAS EPE	6 %
0 4:	DOROSONA CEPEDIANUM AD CARASSIUS AURATUS AD CYPRINUS CARPIO AD NOTROPIS ATHERINOIDES AD CARP X GOLDFISH HYBRID NOTROPIS LUTKENSIS AD CARPIODES CARPIO AD HOXOSIGHA ANISURUM AD HOXOSIGHA ANISURUM AD HOXOSIGHA MACROLEPIDOTUM AD AMBLOPLITES RUPESTRIS AD LEPOMIS CYANELLUS AD LEPOMIS MACROCHIRUS AD HICROPTERUS DOLONIEUI AD HICROPTERUS SALHOIDES AD POHOXIS NIGROMACULATUS AD	8 - 3 10 1 - 1 1 1 - 1 1 1 - 1 1 1 1 - 1 1 1 1	32 12 72 4 4 4 	24.24 -9.09 54.55 3.03 - 3.03 - 3.03 - - 3.03	77 - - - - - - - - - - - - - - - - - -	308 20 - 4 4 -	91.67 - 5.95 - 1.19 1.19	90 	386	58.04 	22 4 16 1 1 2 2 2 3 3 2 2	88- 164-4- 4- 88- 128-	30.14 5.48 21.92 1.37 1.37 30.14 2.74 4.11 2.74
	TOTAL MUMBER NUMBER OF SPECIES TOTAL CHE	3 <u>3</u> 7	132		84 4	336		155 3	6 64		73 9	292	

3-75 75

TABLE	3.3	-186	CONT	.)
	010			

	1.00	CATION	7	L01	CATION	9	LO	CATION	10
	NO.	CPE	% ·	₩О,	CPE	7.	₩О.	CPE	X
. DOROSOMA CEPEDIANUM AD	55	220	60,44	30	152	55.07	69	276	81.18
CARASSIUS AURATUS AD	_	-	_	_	_	-	1	4	1.18
CYPRINUS CARPIO AB	4	16	4.40	2	8	2,90	_	•	-
NOTROPIS ATHERINDIDES AD	26	104	28.57	16	ó4	23.19	12	48	14.12
CARP X GOLDFISH HYBRID	2	8	2.20	-7	28	10.14	2	8	2.35
NOTROPIS LUTRENSIS AD		_	-	_		-	_		-
CARPIDDES CARPIO AD	1	4	1.10	_	_	-	_	_	_
MOXOSTOMA ANTSURUM AD				_	_	_		-	_
MOXOSTOMA MACROLEPIDOTUM AD	_	_	_	_	_	_	_	_	_
AMBLOPLITES RUPESTRIS AD	-	_	_	_	_				_
LEPONIS CYANELLUS AD	1	4	1.10	4	16	5.80	_	_	_
LEPONIS MACROCHIRUS AD	_	_	_	-		_	_	_	_
MICROPTERUS DOLOMIEUT AD	_	_	_	_	_		1	4	1.18
MICROPTERUS SALMOIDES AD	2	8	2,20	1	4	1.45	_	<u>.</u>	
POMOXIS NIGROMACULATUS AD	_	_	_	ī	4	1.45	_	_	-
				1	•	11.1%			
TOTAL NUMBER NUMBER OF SPECIES	91 7			69 7	:		85 5		
မှ TOTAL CPE	·	364		•	276			340	
<u> </u>									

TABLE 3.3-19 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFOR) (FISH PER 8 MOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 24 JUNE 1981.

	Lo	catio:	ı	Lo	cati≎	n 2	Lo-	cation	5	Lo	cation	n /	Lo	Catio	n 9	Ło	catio	л 10
Species	No.		8	No.	CPE	T	No.	CPE	<u></u>	No.	CPE	%	No.	CPE	<u> </u>	Ŋo.	CPE	<u> %</u>
Longmose gar	_	-		j	<1	25.0	_	_	-	-	_	-			_	-		_
Gizzard shad	_	-	-	1	<1	25.0	-	-	-	2	1	6.9	-	-		-	-	-
Carp	1/	5	63.0	2	1	50.0	2	1	40.0	14	6	48.3	4	2	100.0	4	2	100.0
Goldfish x Carp	- 6	2	22 .0	-	-	-	-	-	-	1	<]	3.4	-	-	-	-	-	-
River carpsucker	-	-	-		-	-	-		-	3	1	10.3	-	-	-	-	-	-
Quiliback	-	-	_	-	-	-	-	_	-	2	1	6.9	-	-	-		-	-
Smallmouth buffalo	1	ા	3.7	-	-	-	-	-	-	1	≺1	3.4	-	-		-	-	•
Silver rodhorse	-		-	-	•	-	1	<1	20.0	1	<1	3.4	-	-	-	-	-	-
Shorthead redhorse	1	<1	3.7	-	-	_	-	_	-	J	<1	3.4	-	-	-	-	-	-
Black bollhead	į	<1	3.7		_	-	-	-	-	-		-	-	-	_	-	-	-
Channel caiffsh	-	-	_	-	-	_	1	<1	20.0	-	-		-	_	-	-	-	-
White bass	_	-	-	-	_	-	_	_	-	2	1	6.9		_	_	-	-	-
Yellow bass	1	<1	3.7	-	_	_		_	-	1	<1	3,4	_	_	_	-	-	-
Freshwater drum	-	-	-	-	-	-	1	<1	20.0	1	<1	3,4	-	-	_	-	-	-
iotal Number	27			4			5			29			4			4		
Number of Species	5			3			4			10			1			1		
fotal CPE		10			1.5			1.9			12			2			2	

TABLE 3.3-20 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 8 JULY 1981.

					ı. Pu				0 4 T T S W	_	1.6	DATION	-
	•	MD. Lu	CATION CFE	1 %	MO.	CATION CPE	2 %	NO.	CATTON CPE	ت ۲	NO.	CATJON CPC	ź
	LEPISOSTEUS OSSEUS AD DOROSOMA CEPEDIANUM AD HIODON ALOSOIDES CYPRINUS CARPIO AD CARP X GOLDFISH HYBRID CARPIODES CARPIO AD CARPIODES CYPRINUS AD TOTIOBUS BUBALUS AD MOXOSTOMA MACROLEPIDOTUM AD ICTALURUS HELAS AD ICTALURUS HUNCTATUS AD MORONE CHRYSOPS AD POMOXIS ANNULARIS AD	33 16 4 1 - - - 1	1 6 2 1 - - - - -	10.71 10.71 	2 - 1 - - - - - - - - - - - - -	1	66,67 33,33 - - - - - - -	7 7 1 1 1 5	1 3 1 <1 <1 <2 -1	11.11 38.89 5.56 5.56 5.56 27.78	1 1 31 1 1 2 2	13 13 11 11 11 11	2.38 2.38 73.81 2.38 2.38 2.38 4.76 2.14 2.38
1 1	TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	29 5	11		3	, 1		18 7	в		42 8	18	

TABLE 3.3-20 (CONT.)

		CATION 9		LOCATION 10			
	NO.	CFF	Z	NO.	CPE	ኢ	
LEFISOSTEUS OSSUES AD				_	-	_	
DORUSUMA CEPEDIANUM AD		_	_	_	_	_	
HODON ALDSOIDES	-	=	_	_	_	-	
CYPRINUS CARPIO AD	5	2	100	7	3	100	
CARE X GOLDETSH HYBRID	-	_	-	_	_	_	
CARFIODES CARFIO AD	_	_	_	_	_	-	
CAMPIDDES CYPRINUS AD		-	-	_			
ICIlubus Bubalus ab	-	-	•••		•••		
IDXOSTOMA ANIGURUM AD	•••			**	•	•••	
10XOSTONA MACROLEPIDOTUM AD	••		•••	••		••	
ICTALURUS MELAS AD		_	_	-	-	_	
ICTALURUS PUNCTATUS AD	_	•••	••		_	_	
MORONE CHRYSOPS AD	-	-		1**	• • •	**	
POMOXIS ANNULARIS AD	_		-	-			
TOTAL NUMBER	5			7			
NUMBER OF SPECIES	1			1.			
TOTAL CPE		2			3		

3-79

TABLE 3.3-21 SPECIES COMPOSITION, CAICH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 22 JULY 1981.

		1.0 NO.	CATION CPE	1 %	NO.	CATION CPF	2 %	L0! ₩0.	CATION CPF	S %	1.0 NO.	CATION CPE	7 %	
	LEPISOSTEUS OSSUES AD DOROSOMA CEPEDIANUM AD HIODON ALOSOTUES	3 1 -	٠1_	11.11 3.70	1 2 1	<] [<]	14.29 28.57 14.29	- 3 1	; { }	- 50.00 16.67	- 2 2	Ī	5,26 5,26	
	CYPRINUS CARPID AD CARP X GOLDEISH NYBRID	12 7	. 5 . 4	44.4 1 33.33	_ _	- 		<u>1</u>	<1 	16.67	2 <u>5</u>	10	45 _± 79	
	CARPIDDES CARPID AD CATOSTOMUS COMMERSONI AD	ī	< Î	3,70	_	-		_	. <u>-</u>		<u>l</u>	<u>ا</u> ۽ آ	2.63	
	ICTTORUS BUBALUS AD MOXOSTOMA FRYTHRURUM MUXOSTOMA MACROLEPIDOTUM AD	-		-		-			_ _ _ T		Ī	< 1 < 1	5.26 2.33	
	TOTALURUS MELAS AD ICTALURUS MATALIS AD	. <u>-</u> . <u>-</u>	- -	- 3	 			1	< <u>I</u> -	16.67	- -	_ , ī	2,43	
	TETALURUS PUNCTATUS AD MORDNE CHRYSOPS AD	-	-	 	2	- 1	- 28,57		<u>-</u>	_	3 1	< 1	7.89 2.63	
	NORONE MISSIPPIENSIS AD POMÚXIS ANNULARIS AD	- i	ί	3.70		< 1	14.29	-		-	<u>-</u>	= :,	-	
						ð.			•					
ند در	TOTAL NUMBER	27			7 5			6			38			
_	NUMBER OF SPECIES TOTAL CPE	6	12		5	3		7	2		7	16		

TABLE 3.3-21 (CONT.)

	i00 NG.	CATION 9	jā %		ATION CPE	10 2
LEBIOSCIPUS OPENES AT						
LEPISOSTEUS OSSUES AD	_	_	_	-	_	_
LUROSONA CEPEDIANUM AD	_		_	••		-
HIODON ALOSDIDES	-	-	_			
CYPRINUS CARPIO AD		•	-	ዎ	4	90.00
CARP X GULDFISH HYPRID				-	_	••
CARPIODES CARPIO AD	-	•••		***		
CAIDSTOMUS COMMERSONI AD	_	_		-	_	
ICTIORUS PUDALUS AU	_	•	_			_
HUXUSTOHA ERYTHRURUK	_		_	_		***
MOXOSTOMA MACROLEPIDOTUM AD	-	_		•=		
ICTALURUS HELAS AB	-	•••	_	_	_	••
ICTALURUS NATALIS AD	_	_			·-	_
ICTALURUS PUNCTATUS AD	_	_	_	1	1	10.00
MORONE CHRYSOPS AD	_	-	_	***		•••
MURONE MISSIPPIENSIS AD	-	_		_	_	
POMOXIS ANNULARIS AD	_	-	-	-		
					•	
TOTAL NUMBER	Q			10		
NUMBER OF SPECIES FOTAL CPE	0	ø		2	4	

eNet lost.

Electronic Filing - Received, Clerk's Office: 10/16/2015
TABLE 3.3-22 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING GOCATION NEAR THE DRESDEN STATION, 5 AUGUST 1981.

	10 NO.	CATION CPE	1 X	LO(NO+	CATION CPE	2 %	LO: NO:	CATION CPE	5 %	Loc No.	CATION CPE	7 Z
LEPISOSTEUS OSSUES AD DOROSCHA CEPEDIANUM AD HIODON ALOSOIDES CYPRINUS CARPIO AD CARP X GOLDFISH HYBRID CARPIDDES CARPIO AD ICTIOBUS BUBALUS AD MOXOSTOMA MACROLEPIDOTUM AD ICTALURUS PUNCTATUS AD MOROME CHRYSOPS AD FOMOXIS NIGROMACULATUS AD APLODINOTUS GRUNNIENS AD APLODINOTUS GRUNNIENS AD	10 - 1	4	90.91	1 2 1 1 - 1	0 1	16.67 33.33 	21 6 1 1 2 1 - 1	1022	13.33 6.67 40.00 6.67 6.67 13.33 6.67	11 1 1 1 1	4000	68.75 6.25 6.25 6.25
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	11 2	4		<u> </u>	. 2		15 8	6		16 6	ó	

TABLE 3.3-22 (CONT.)

	LO	CATION 9	•	LOC	ATION 1	0
	ND.	CPE	Z	ио.	€PE	Z
LEPISOSTEUS OSSUES AD		_			_	
DORDSOMA CEPEDIANUM AD	-	_	_	**	_	-
HIDDON ALOSOIDÉS			_	_	·	-
CYPRINUS CARPID AD		_	-	5	2	100
CARP X GOLDFISH HYBRID	_	_	_	_	-	~
CARPIODES CARPID AD		-	_	_	_	-
ICTIOBUS BUBALUS AD	-	_		-	-	_
MOXOSTOMA HACROLEPIDOTUM AD	_	_	_	_	n.,	_
ICTALURUS PUNCTATUS AD	_	_	-	•	_	-
MORONE CHRYSOPS AD	_		_	_	_	-
POMOXIS NIGROMACULATUS AD			-		141	-
APLADINOTUS GRUNNIENS AD	_	-	-	-		
107AL NUMBER	0			5		
NUMBER OF SPECIES	ŏ			1		
TOTAL CPE	v	0		*	. 2	

TABLE \$.3-23 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 20 AUGUST 1981.

	NO +	CATION CPE	1 %	L0 ₩0.	CATION CPE	2 %	100 100 •	CATION 5	5 %	NO.	CATION CPE	7 %
DOROSOMA CEPEBIANUM AD CYPRINUS CARPIO AD CARP X GOLDFISH HYBRID - CARPIOBES CARPIO AD MOXOSTOMA ANISTRUM AD MOXOSTOMA MACRO AD ICTALURUS PUNCTATUS AD MORONE MISSIPPIENSIS AD APLODINOTUS GRUNNIENS AD	15 1 - - - 1 1	501-100	83.33 5.54 - - - 5.54 5.56	1 2 1	0 1 - - - - 0	25.00 50.00 - - - - 25.00	1 1 7 7 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 14 13 1 21 -	0 1 0 1 0	4.35 60.87 4.35 13.04 4.35 6.70 4.35
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	. 18 4	6		4 3	i		0	Ġ		2 <u>3</u> 7	8	

TABLE 3.3-23 (CONT.)

	NO.	CATION CPE	9 %	LDC NO.	ATION CFE	10 2
DOROSOMA CEPEDIANUM AB CYPRINUS CARPIO AD	1	0	14.29 57.14	15	- 5	- 83.33
CARP X GOLDFISH HYBRID	- -			_	-	•••
CARPIONES CARPIG AD HOXOSTOMA ANISURUM AD	_	_		3 -	1 -	16,67
MOXOSTOMA MACRO AD	.~. 1	_	14 15	_	_	
ICTALURUS FUNCTATUS AD MORONE MISSIPPIENSIS AD	1	0	14.29 14.29		_	-
APLODINOTUS GRUNNIENS AD	_	-	_	-	-	_
	٠.					
TOTAL NUMBER	7			18 2		
NUMBER OF SPECIES TOTAL CPE	4	3		۷	6	

Electronic Filing - Received, Clerk's Office: 10/16/2015

TABLE 3.3-24 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER BHOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 10 SEPTEMBER 1981.

	ИD. ГО	CATION	1 2	LÜ NO.	HOLTAC			CATION			CATION	7
	1417+	CPE	7.	MEN	CPE	X	₩0+	CPE	7,	۸D٠	CHE	%
LEPISOSTEUS OSSEUS AD	1	Q.	6.25	_			-	71	_	_	49	_
ALOSA CHRYSOCHLORIS	_				-	-	1	0	3.13	_	_	
DÜRÜSÜMA CEREDIANUM AD	5	1	12.50	2	1	16.67	16	6	50. 0 0	_	-	177
HIDDON ALOSUIDES	1	Ō.	_5₁25	_	-	-	1	Ü	3.13	_		_
CYPRINUS CARPIO AD	7	شُ	43.75	3	1	25.00	7	3	21.88	7	3	87.50
CARP X GÜLDFISH HYDRID	2	1	12.50	_		_	-	-	-	1	٥	12.50
CARPIONES CYPRINUS AD	-	···		-	_		1	0	3.13	-	_	-
ACTIONUS WUBALUS AD	1.	Ģ	. 6 +25	-	~		_	_	••	-	_	_
NOXOSTOMA MACROLEPIDOTUM AD	2	1	12.50	2	1	16.67	3	1	9.38	_	164	_
ICTALUKUS PUNCTATUS AD	· ·	_	~	1.	O.	8.33	~	-	-		-	161
HORONE CHRYSOPS AD	_	•••	****	1	Ü	8.33	_	_		_	-	16.
MORONE MISSIPPIENSIS AD	**	-	-			_	3	1.	9.38	_		_
AMBLOPLITES RUPESTRIS AD	_	-	-	1	0	8.33	_	•-	-		44.	_
APLODINOTUS GRUNNTENS AD	-		<u></u>	2	1	16,67	PH.	_	-	-	-	•-
TOTAL NUMBER	15			12			32			8		
NUMBER OF SPECIES	7			12 7			7			5		
TOTAL CPE	-	ક		•	. 4		• •	12		-	3	

TABLE	3.3-24	(CONT.)
1 3 5 2 5 5 5 5 5 5 5	W L L F - 7	1 C U ()

	LQ:	CATION CPE	9 %	LOE NO.	CATION 1	0 %
LEPISOSTEUS OSSEUS AD				**		-
ALOSA CHRYSOCHLORIS	_	10	_	=4.	_	_
DOROSOMA CEPEDIANUM AD	2	1	33.33		-	_
HIODON ALOSOIDES	_	_		_	_	_
CYFRINUS CARPID AD	3	1	50 + 00	1	G	100
CARP X GOLDFISH HYBRID	_	=		- -	150	_
CARPIODES CYPRINUS AD	100	_	-		_	_
ICTIOBUS BUBALUS AD	1	0	16.67	**	-	-
MOXOSTOMA MACROLEPIDOTUM AD		_	_	_	_	
ICTALURUS PUNCTATUS AD	_	-	-	-	-	in.
MURDNE CHRYSOPS AD	m		-	_	_	_
MORONE MISSIPPIENSIS AN	_		-		_	1
AMBLOFLITES RUPESTRIS AD	_		_	~	**	-
APLODINOTUS GRUNNIENS AD	_			_	_	_
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	<u>6</u> 3	2		1 1	: 0	
ř a -						

Electronic Filing - Received, Clerk's Office: 10/16/2015

TABLE 3.3-25 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER 8. HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 23 SEPTEMBER 1981.

	₩ 0.	CATION CPE	i %	NO.	CATION :	2 %	LO! NO:	ATION CPE	ំ 5 %	LO NO+	CATION CPE	7 %
LEPISOSTEUS OSSUES AD ALOSA CHRYSOCHLORIS DORGSOMA CEPEDIANUM AD HIODON ALOSOIDES CYPRINUS CARPID AD CARP X GOLDFISH HYBRID TCTIOBUS BUPALUS AD MOXOSTOMA MACRO AD ICTALURUS FUNCYATUS AD MORONE MISSIPPIENSIS AD MORONE MISSIPPIENSIS AD	2 1 1	1 0 0	50.00 25.00 25.00	2		166	- 1 8 7 - - - 2 1	023211110	4.00 24.00 32.00 28.00 - - B.00 4.00	· · · · · · · · · · · · · · · · · · ·	0 0 43 - 1 0	7.14 7.14 21.43 57.14 7.14
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	4 3	1		. 2	1		25 6	۶		14 5	5	

TABLE 3.3-25 (CONT.)

	NO.	ATION CPE	9 %	NO.	AT LON CPE	10 %
LEPISOSTEUS OSSUES AD ALBSA CHRYSOCHLORIS DOROSONA CEPEDIANUM AD HIODON ALOSOIDES CYPRINUS CARPIO AD CARP X GOLDFISH HYBRID ICTIODUS BUBALUS AD MEXESTOMA MACRO AD ICTALURUS HELAS AD ICTALURUS PUNCTATUS AD MORONE MISSIPPIENSIS AD	1 4 - - -	2 - 0	16,67 66,67 - 16,67	- - - 7 1 1 - -	3000	77.78 11.11 11.11
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	5 3	2		9 3	3	

TABLE 3.3-26 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 24 JUNE 1981.

		ton 1_		tion 2		ion 5		ion 7		ion 9		ion 10
Species	No.	26	No.	7	No.		No.	2	No.	e D	No.	<u> </u>
Gizzard shad		_	_	_	22	73.3	150	90.4	3	12.5	29	82.9
Carp	1	25.0	-	-	-	**	_	-		_	2	5.7
Emerald shiner	2	50.0	3	18.8	1	3.3	2	1.2	1	4.2	1	2.9
Spottail shiner	-	-	-	-	-	_	-	-	_	*	2	5.7
Spotfin shiner	-		1	6.2	-	_	_	-	-	-		-
Suckermouth minnow	_	_	1	6.2	-	_	_	-	_	_		-
Bluntnose minnow	-	_		-		_	_	-	-	-	1	2.9
8ullhead minnow	1	25.0	2	12.5	-	_	THE	-	***	-	-	-
Black bullhead	_	-	-		-	-	-	-	1	4,2	-	-
Channel catfish	-	-	4	25.0	-	-	-	-	1.00	-		-
Green sunfish	_	-	_	. –	-	-		-	1	4.2	-	-
Orangespotted sunfish	_	-	2	12.5	2	6.7	3	1.8	-	-	_	-
Bluegill	***	-			· 1	3.3		_	-	-	_	-
White crappie	_	-	-	-	1	3.3	-		_	-	_	-
Black crappie	-	-	-	-	1	3.3	-	_	-	-	-	
Freshwater drum	-	_	3	18.8	2	6.7	11	6.6	18	75.0	-	-
Total Number	4		16		30		166		24		35	
Number of Species	3		7		6		4		5	·	5	

TABLE 3.3-27 SPECIES COMPOSITON AND PERCENT OF CATCH OF FISH COLLECTED BY STINING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 6 JULY 1981.

	LOCATION 1		LOCATY	LOCATION 2		LOCATION 5		LOCATION 7	
	₩Û,	X	NO,	χ	HU.	Z	NO.	X	
OOROSOMA CEPEDIANUM AD		_	_		-		. –	•	
CYPRINUS CARPIO AD				_	_	••	2	28.57	
NOTROPIS NEOSONYDS AD	_	-	-		-		••	•	
NOTROPIS SPILOPICNUS AD	_	=	•		•			_	
NOTROP1S ATHERINOIDES AN			į	16.67		•	•		
PINEPHALES NOTATUS AD	-	_	1	16.67	-	_		44.30	
NOTROPIS STRANTNEUS AD	:			· -		-	<u> </u>	14-29	
CARP X BULDFISH HYBRID	;	50.00		- 17	-		_		
NOTROFIS LUIRENSIS AD	•	• 1]	16.67	•		_		
10110008 MBALUS AD	•	• •	1	16.67	_	_	9	28.5/	
FERNIS CYANGLUS AD				_	••				
CFPOMIS MACROCHIRUS AD	_		1	16.67	_			_	
MICROPILKUS DOLOMIEUI AD	-	EC AS	1	-	_	_		_	
MICROPTERUS SALMUIDES AD	1. _	50,00	i	14.47		-			
COMOXIS ANNULARIS AD ACCOMINGTUS GRUNNIENS AD		_		1.13 + 17 7		_	2	29.57	
•							-		
TOTAL NUMBER	2:		દ		9		(
NUMBER OF SPECIES	7		£		0		4		

TABLE 3.3-27 (CONT.)

	LOCATIO	IN 9	LUCAT	10N 10
	NO.	7.	NO.	X.
DOROSOMA CEPFOIANUM AD	_	_	_	
CYPRINUS CARPIO AD	_	***	2	40.00
NOTROFIS HUDSONIUS AD	••		•.	-
NOTROLIS SPILOPTERUS AD	-	-	_	_
NOTROPTS ATHERINOTHES AD		_	2	40.00
PIMETHALES NOTATUS AD		_	_	_
NUTROPIS STRAMINEUS AD				•
CARE X GOLDFISH HYDRID	_		-	-
NOTROPIS LUTRENSIS AD	**		••	
ICLIOBUS BURALUS AT	-	_		_
LEFONTS CYANELLUS AD	-		•	•••
LEPONIS MACROCHIRUS AD	••	-		
MICROPIERUS DOLOMIEUT AB	·-	••	1	20.00
MICROFIERUS SALMOIDES AD	171	••	-	-
POMOXIS ANNULARIS AD	-	-	-	_
ACLODINOTHS GRUNNIENS AD	_	-	 '	-
TUTAL NUMBER			स	
NUMBER OF SPECIES	. 0		5 3	
	•			

TABLE 3.3-28 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 21 JULY 1981.

	TA20.1	ION 1	LOCAT	ION 2	LUCAT	18N S	LOCAT	10N 7
	MB.	X.	MO.	7.	№П .	7.	₩ 0+	Z.
DOROSOMA CEPEDIANUN AD ESOX LUCTUS AD	2 -	25.00	<u>-</u>	14.29	3	27.27	8	88.89
CYPRINUS CARPIO AD NOTROPIS SPILOPTERUS AD NOTROPIS ATHERINOIDES AD	- - 3	∃ 37,50	<u>-</u> -	14[29		19,18 7,09	<u>-</u> -	11.11
PIMEPHALES VIGILAX AN CARPIODES CARPIO AD ICIALURUS PUNCTATUS AD	1	12.50	3 1	42.86 14.79	2	18,18	- - 	- ·
PERCOPSIS ONISCOMAYOUS AD LEPONIS HUMOLIS AD	- -	- - -	_ 1	_ _ 14.29		-	-	-
POMOXIS ANNULARIS AD POMOXIS MIGRONACULATUS AD PERCA FLAVESCENS AD	1	12.50 12.50	- -	<u>-</u> -	2	18, 1 9 9,09	<u> </u>	- -
APLODINGTUS GRUNNIENS AD		-	-	***	-	-	_	
TOTAL NUMBER NUMBER UF SPECIES	8 5		7 5		1 ፤ ሴ		9 2	

TABLE 3.3-28 (CONT.)

	LOCAT	IUN 9	LOCALION 10		
	NO.	7,	ΝО,	Z	
DUKUSOMA CEPEDIANUM AD FSOX LUCIUS AD		- 	 	·	
CYPRINOS CARPIO AT MOTROPIS SPILOPIEROS AD	1	20.00	4	33,33	
NOTROPIS ATHERINOTRES AD		 -	5	41.67	
PTHEFHALES VIGILAX AD CARDIDDES CARPID AD	_		-· 1	8,33	
ICHALURUS FUNCTATUS AD PERCOPSIS ADSCORATO	1 0	20.00 40.00	- 		
LECOMIS HUMILIS AD	_	-	•=•	_	
PUMOXIS ANMULARIS AD PUMOXIS MIGROMACULATUS AD		- 	7	16.67	
PERCA FLAVESCENS AD AMEDDINOTUS GRUNNIENS AD	 1	20,00	· -	-	
HULDO HOUSE ON OR STENS HO	÷	20100		_	
			•		
TOTAL NUMBER NUMBER OF SPECIES	4		12 ; 4		

TABLE 3.3-29 SPECIES COMPOSITION AND PERCENT OF CATCH OF BISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 4 AUGUST 1981.

		LOCAT	TON 1	LÖCAT	TON 2	LOCAT	TION 5	LOCAT	ION 7
		ND.	7	NO.	7.	ΝΩ.	X	№0 •	X
	DOROSOMA CEPEDIANUM AD	1	20.00	1	4+25		_	4	33.33
	EYFRINUS CARPID AD	ī	20,00				-	_	
	NOTROPIS ATHERINOIDES AD	ī	20.00	11	48.75	4	80,08	3	25.00
	PIKEPHALES NOTATUS AB	_	•	ī	6.25	<u>-</u>		-	
	PIMEPHALES VIGILAX AD	-	_		_	un .	_	1	8.33
	CARPOIDES SP AD	1	20.00	***	_	-		_	_
	ICTALURUS PUNCTATUS AB	-	•••	1	6.25	_	-	_	_
	LEPONIS HUMILIS AD	-	-	1	4,25	_	₩.	1	8.33
נ	LEPOMIS MACROCHIRUS AD	-	-	_	_		•••	1	8.33
2	HICROPIERUS DOLONIEUI AD	.		- ,	· -	-	-	1	8+33
П	HICROPTERUS SALMOIDES AD	1	20.00	-	-	_	_		_
	POMOXIS ANNULARIS AD	-	_		_	=	-	~	_
	PERCINA CAPRODES AD	_	_	-		-	-	-	-
	APLODINOTUS GRUNNIENS AD	-	-	1	6 ₊25	1	20.00	1	8.33
	TOTAL NUMBER	5		16		5		12	
	NUMBER OF SPECIES	5		6		2		7	

98

TABLE	3.3-	29 (CONT.	1
111066		<u>د ۱</u>		,

	UOCAT.	10N 9	LOCATION 10		
	NO.	X	NO.	z	
PORUSOMA CEPEDIANUM AD CYPRINUS CARPIO AD NOTRUPIS ATHERINOIDES AD PIMEPHALES NOTATUS AD PIMEPHALES VIGILAX AD	<u>1</u> -	33.33 	3 38	33,33 33,33 -	
CARPOIDES SE AD ICTALURUS PUNCTATUS AD LEPOMIS HUMILIS AD LEFOMIS HACROCHIRUS AD MICROFTERUS DOLOMIEUI AD MICROFTERUS SALMOIDES AD FOMUXIS ANNULARIS AR	-	- - - - 33,33	 - - - 2	22,22	
PERCINA CAPRODES AD APLODINOTUS GRUNNIENS AD	1.	33,33	1 _	11.11	
TOTAL NUMBER NUMBER OF SPECIES	3 3		9 4		

TABLE 3.3-30 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION MEAR THE DRESDEN STATION, 19 AUGUST 1981.

	LOCATION 1		LOCATION 2		LOCATION 5		LOCATION 7	
	, О И	Z	NO.	Z	NO.	X	NO.	X
DOROSCHA CEPEDIANUM AD		.au	1	25.00	_		_	
CYPRINUS CARPIO AD	1	50.00	<u> </u>		i	100	_	-
NOTROPIS HUDSONIUS AB	ī	50.00	_	_	**			_
NOTROPIS SPILOPTERUS AD		<u> - · · · · · · · · · · · · · · · · · · </u>	1	25,00	-		-	
NOTROPIS ATHERINOIDES AD	_	_	2	50.00	_	-	ļ	25.00
LEPOMIS CYANELLUS AD	_	-	•	•	-	-	1	25.00 25.00
LEPOMIS MACROCHIRUS AD	_	_	_	-	_	_	ļ	25.00
MICKUPTERUS DOLOMIEUI AD	•	um.	_	_	_	-	1	25.00
								•
TOTAL NUMBER	2		4		1		4	
NUMBER OF SPECIES	2		3		ī		4	

	TABLE 3.3-	<u>-30 (CONT.</u>	.)	
	LOCATION NO.	19 %	LDCATIO	10 X
DOROSOMA CEPEDIANUM AD	_	_	_	-
CYPRINUS CARPID AD	_	-	-	<u></u>
NOTROPIS HUDSONIUS AD	44	_	LI	-
NUTROPIS SPILDPTERUS AD		_	-	
NOTROPIS ATHERINDIDES AD	-	_	-	-
LEPONIS CYANELLUS AD	_	-	-	
LEPONIS MACROCHIRUS AD	_	_	-	
HICROFTERUS DOLONIEUT AD	-	-	1	100
TOTAL NUMBER	0		1	
NUMBER OF SPECIES	Ö		Î	

TABLE 3.3-31 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 9 SEPTEMBER 1981.

	LOCATI	0rl 1		ION 2	LOCATI	QN 5	ŁOCAT	10N 7
	ΝΟ.	X	Н Д+	X	NO.	Z	NO.	7.
DOROSOMA CEPEDIANUM AD	**		3	30.00		_		_
NOTROPIS ATHERINOIDES AD	-	-	5	50,00	01	100	3	75.00
PIMEPHALES NOTATUS AD	-	_	1	10.00			_	_
CATOSTOMUS COMMERSONI AD		_	_	_	-	_	••	
LEPONIS NACROCHIRUS AD	-	_	****	_	_		1	25.00
PERSINA CAPRODES AD	_	-	i	10.00	-	_	_	_
APLODINOTUS GRUNNIENS AB	_	-	-	••	₹1	_	_	_
TOTAL NUMBER NUMBER OF SPECIES	0 0		10 4		10 1		4) 7.	

TABLE 3.3-31 (CONT.)

	1.00AT	ION 9	LOCATION 10		
	МО ,	2	NO.	Z	
DOROSOMA CEPEDIANUM AD	_	_	_	· –	
NOTROPIS ATHERINUIDES AD	5	83.33	-	_	
PIMEPHALES ROTATUS AD	~	-	m:	_	
CATOSTOMUS COMMERSONI AD		_	1	100	
LEPONIS MACROCHIRUS AD		_	-	= "	
PERCINA CAPRODES AD	_	-	_	· –	
AFLODINOTUS GRUNNIENS AD	1	16.67	-	-	
TOTAL MINDER					
FOTAL NUMBER NUMBER OF SPECIES	6 2		1		
TOTAL CPE	£		I		

TABLE 3.3-32 SPECIES COMPOSITON AND PERCENT OF CATCH OF FISH COLKECTED BY SEINING AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, 22 SEPTEMBER 1981.

	LOCAT	ION 1	LÜCAT	TON 2	LOÇATI	อก 5	LOCATION 7		
	₩0+	X.	. Oh	7.	У О.	X.	NΩ.	X.	
DORUSUMA CEPEDIANUM AD CYPRINUS CARPIO AD NOTROPIS SPILOPTERUS AD	1	1.82 - 1.82	1 - -	2.33	-	 	1	14,29 14,29	
HOTKOFIS ATHERINGIDES AD LEPONIS MACROCHIRUS AD	5 <u>3</u>	96.36	4 2	97.67	45	100	4	57,14	
HICROPTERUS SALMOIDES AD	_	-	_	m	-	-	1	14.29	
TOTAL NUMBER RUNDER OF SPECIES	55 3		43 2		45 1		? 4		

TABLE 3.3-32 (COMT.)

	LOCATI	DN 9	LOCATION 10 NO. Z		
DOROSOMA CEPEDIANUM AD		 ω	NU+	_	
CYPRINUS CARPIO AU NOTROPIS SPILOPTERUS AD		-	-	 	
NOTROPIS ATHERINDIDES AD LEPOHIS MACROCHIRUS AD	3	100	9	90.00 10.00	
MICROPTERUS BALMOIDES AD	-	_	Ξ		
TOTAL NUMBER	3		10		
NUMBER OF SPECIES	ī	•	2		

TABLE 3.3-33 NUMBER AND MEAN CONDITION FACTOR OF SELECT SPECIES OF FISH COLLECTED AT EACH SAMPLING LOCATION NEAR THE DRESDEN STATION, JUNE - SEPTEMBER 1981.

	•			Locat	tion 1	Location 2		<u>Local</u>	<u> 11011 5</u>	Locat	Location 6		<u> Location 7</u>		<u>Location 9</u>		<u>ion 10</u>
Month	Species	Maturity	<u>Sex</u>	No.	Mean K ^a	<u>No</u> ₂,	Mean K	Mo.	Mean <u>K</u>	<u>. 01</u>	Mean <u>K</u> .	No.	Mean K	Nu.	Mean <u>K</u> .	No.	Mean K
Ju ne	Carp	Adult bmmature	. Fc Mp	9 8 -	1.52 1.63	2 - -	1.42	1 1 -	1.67 1.40 -	4 5 1	1.54 1.55 1.41	7 6 1	1.54 1.56 1.45	2 5 4	1.66 1.53 1.57	1	1.48 1.6I
	Goldfish	Aduit	M F	_ 1	- 2.93	_	-	-	:	3	1.59 -	<u>-</u> -	-	-	-	-	<u></u> -
	Carp x Goldfish	Adult Immature	M E	8 7 -	1.57 1.81	- - -	- - -	<u>.</u> - -	- -	1	1.69 1.72	. <u>-</u> 1	1.70	- - 1	- 1.71	1 - -	1.54
	Shorthead redhorse	Adult Immature	F -	<u>-</u> -	- -	1 5	0.82 0.9]	ī	0.91	-	- -	1 -	1.13		- -	-	-
	Small mouth bass	Impature	-	-	_	_	-			i	0.94	1	1.21	ı	1.06	£	1.15
July	Carp	Adult Immature	M F -	15 11 1	1.44 1.57 1.30	1 1 1	1.35 1.78 1.39	5 6 3	1.46 1.36 1.34	1 2 -	1.49 1.60	19 12 1	1.34 1.49 1.39	6 13 7	1.42 1.53 1.29	16 6 2	1.50 1.59 1.38
	Goldf ish	Adul t	F	1	3.39	-	-	-		-	-	_	_	-	-	_	-
	Carp x Goldfish	Adult Immature	N £ -	1/ /	1.79 U.81	-	-: 	1	1.51	<u></u> -	- - -	3 1	1.72 - 1.26	2	1.87 1.65	4 2	1.83 2.22
	Shorthead redhorse	Adult	րվ 1 М	- -	-	<u>-</u>	-	3 1	0.87 0.89 0.84	-	- - -	2 - 1	0.95	<u>.</u> -	<u> </u>	1 - -	0.91
		Immature	-	-	-	1	0.96	2	0.83	_	_	_	-	-	-	1	0.71
	Smallmouth bass	Aduit Immature	M U -	-	- - -	1 3	0.94 1.02	- - 3	- - 1.18	- - 2	_ 1.14	- - -	~ ~	1 - 2	1.77 - 1.30	- 5	- 1-24

¥100

TABLE 3.3-33(CONT.)

		Eq.		Location 1		Location 2		Location 5		Loca	Location 6		t <u>ion 7</u>	Location 9		<u>Location 10</u>	
Month	Species	Maturity	<u>Sex</u>	Mo.	Mean K_	No.	Maan K	No.	Mean <u>X</u>	No.	Mean <u>K</u>	No.	Hean <u>K</u>	<u> </u>	Mean K_	<u> No .</u>	Mear K.
August	Carp	Adult Immature	M -	16 7 1	1.32 1.22 1.03	- 3 -	1-27	3 5 1	1.26 1.31 1.22	2 1 1	1.43 1.39 1.22	11 14 1	1.26 1.26	5 1 2	1.42 1.35	12 5	1.29 1.33
	Carp x Coldfish	Advit	- М F	1 1	1.49 1.68		- -	- -	- -	- -	- -	2 1	1.42 1.58	1 1	1.38 1.78 1.35	3 1	1.58 1.4
	Shorthead . redhorse	Immature Adult	- М Б	- 3 1	0.74 0.66	- - 1	- - 0.79	1 1	0.91 0.74	- -	- - •	- 2 1 1	0.61 1.01 1.04	1 - -	1.53 - -	2 1	0.9 0.6
	Small mouth bass	Adult Immature	М Н -	- - -	-	1 1 1	1.16 1.11 1.15	_ 1	1.31	- - -	- - -	- - 1	1.04	- - -	- -	- - -	- - -
Sept.	Carp	Adult Immature	M F -	7 8 1	1.49 1.50 1.49	- 3 -	1.32	9 7 -	1.37 1.36	7 4	1.46 1.34	9 3 4	1.31 1.47 1.56	2 8 -	1.40 1.36	6 4	1.3 1.3
	Goldfish	Adult	М	_	_	_	_		_	- -	-	_	_	-	-	2	2.6
	Carp x Goldfish	Adult Domature	M F -	8 2 -	1.56 1.68	- 	- - -	 		- 1 -	1.78	2 1 1	1.64 1.55 1.44	3 2 2	1.74 1.64 1.58	2 1 -	1.7
	Shorthead redhorse	Adult	M F	- 4 1	- 0.82 0.97	1 1 -	0.76 0.66	ī	1.04	- 1	- - 0.84	- - -	 - -	- 1	0.73	<u>.</u>	-
	Small mouth bass	Immature Adult	_ М Е	1	- 1.18		0.95 -	1 -	0.96 - -	3	- 1.37 1.25	-	<u>.</u>	- -	<u>-</u>	<u>.</u>	0.9 - -
		Emmature	L	1	1.21	_	-	l	1.13	-	-	1	1.17	.– 3	1.13	ī	1.

⁽a) Mean K-Factor
(b) M = Male
(c) F = Female
(d) U = Undetermined

•				Catcha					and	Percer	it Af	fected	/Samp	ling Lo	cati	on		- <u>-</u>
Sp <u>ecies</u>	Physical Abnormality	Disease or Parasite	Number Affected	Percent Affected	#	<u> </u>	ji.	2	Ŧ	<u> </u>	<u>¥</u>	<u>,3</u> E	<u>*</u>	<u>Z</u> .	*	· = -3	#	<u>10</u>
Carp	Deformed fins Eroded fins Lacerations Knothead		15 6 1 1	17.0 6.8 1.1 1.1	4 2 0 1	15.4 7.7 0.0 3.8	0 0 0 0	0.0 0.0 0.0 0.0	0 0 0	0.0 0.0 0.0 0.0	8 4 0 0	38.1 19.0 0.0 0.0	3 0 0 0	16.7 0.0 0.0 0.0	0 0 1 0	0.0 0.0 9.1 0.0	0 0 0 0	0.0 0.0 0.0
Camp x Goldfish	Eroded fins Deformed fins		3 2	15.8 10.5	ļ l	7.1	_b -	-	-	<u>-</u>	l 1	50,0 50,0	0 0	0.0	0	0.0	1	100.0
River carpsucker	Eroded fins		ì	20.0	-	_	1	100.0	-	-	-	-	D	0.0	0	0.0	-	-
Quillback	Deformed fins		ì	20.0	ij	0.0	0	0,0	-	*	Ü	0.0	1	50.0	-	-	-	_
Silver redhorse	Eroded fins Lacerations		4 2	21.1 10.5	0	0.0 0.0	0	0.0 0.0	3 1	50.0 16.7	-	-	8 0	0.0 0.0	0 1	0.0 100.0	1 6	50.0 0.0
Shorthead redhorse	Leech		1	11.1	0	0.0	1	16.7	O	0.0	-	-	O	0.0	-	_	_	-
Largemouth bass	Lesions		1	H.1	Q	6.0		-	-		1	12.5	•	-	-	_	-	-

⁽a) Total catch represents combined catch from all locations and all methods. (b) Species not collected.

INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS NEAR THE DRESDEN STATION, 6-8 JULY 1981.

			[otal	Catch ^a				Number	and	l Perce	nt Af	fected/S	ampl	ing Loc	atio	o <u>n</u>		
Species	Physical Abnormality	Discase or Parasite	Number Affected	Percent Affected	<u>¥</u>	<u> </u>	ļ	2. 1	Ā	5	<u>#</u>	<u>6</u> _ <u>\$</u>	₹.	7_1	<u>*</u>	<u>9</u>	₹	10 2
Carp	Eroded fins Popeye		8	7.3 0.9	1	5.0 0.0	0	0.0	0	0.0	-	υ _ -	6 1	11.8 2.0	1	5.3 6.0	0	0.0 0.0
Carp x Goldfish	Froded fins		ì	8.3	1	12.5	-	_	0	0.0	-	•	ø	0.0	۵	0.0	_	_
Smallmouth buffalo	Eroded fins		2	50.0		-	0	0.0	Û	0.0	2	100.0	-	_	-	-		-
Shorthead redhorse	Eroded fins		1	12.5	-	••	-	-	ì	16.7	-	-	0	0.0	_	-	-	-
Channel catfish	Eroded fins		1	50.0	1	0.001	Ü	0.0	-	_	-	-	_	~	-	-		-
Green sunfish	Deformed fins		1	2.4	-	-	_	-	-	_	θ	0.0	1	25.0	_		-	-
Bluegill	Eroded fins		1	4.8		-	-	-	-	-	0	0.0	1	50.0	•	-	-	-
Smallmouth bass	Eroded fins		2	20.0	-	**	Q	0.0	0	0.0	ß	0.0	-		-	-	2	40.0
Freshwater drum	Eroded fins		1	20.0	-	7	0	0.0	_	-	-	u	0	0.0	a	0.0	1	100.0

⁽a) Total catch represents combined catch from all locations and all methods. (b) Species not collected.

TABLE 3.3-36 INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS NEAR THE DRESDEN STATION, 20-23 JULY 1981.

	·	Total	Ça tçh ^ü				Number	and	Percent	. AF(egted/ <u>S</u> a	<u>արեն</u>	ng Loca	tion			
Species	Physical Disease or Abnormality Parasite	Affected	Percent Aftected	ì	1	ħ	2 - ¥	Ø.	5 <u>ž</u>	<u>#</u> -	<u> </u>	<u>*</u>	<u> </u>	<u>.</u>	<u>.</u> . \$	<u>p</u> .	<u>ir</u> 10
Gizzard shad	Deformed mouth Froded fins	1	0.8 0.0	1 0	5.0 0.0	ů ů	0.0 0.0	() ()	0.0 0.0	ü	0.0 2.8	Ü	0.0 0.0	Ü	0.0 0.0	0 0	0.0
Goìdfish	Lesions	1	100.0	ì	ומט_ט	_p		,		-		_	_	_	-	_	
Carp	Defarmed fins Knothead Eroded fins Defarmed mouth Lesions Eye missing Operculum missing	17 2 2 2 1 1	18.1 2.1 2.1 2.1 1.1 1.1	2 0 1 0 0 0	13.3 0.0 6.7 0.0 0.0 0.0	1 6 0 0 0	0.00 0.0 0.0 0.0 0.0 0.0) 0 0 0 0 0	12.5 0.0 0.0 0.0 0.0 0.0 0.0	1 0 0 0 0 0	33.3 0.0 0.0 0.0 0.0 0.0	4 0 0 0 0	13.8 3.4 0.0 0.0 0.0 0.0 0.0	2 0 0 1 1 1	16.7 0.0 0.0 8.3 6.3 8.3 8.3	6 1 1 0 0	23.1 3.8 3.8 3.9 0.0 0.0 0.0
Carp x Goldfish	Deformed fins Eroded fins	6 1	21.4 3.6	ն 1	99.3 5.6	-	-	-	-,	-	-	0	0.0	0 0	0.0 0.0	0 0	0.0 0.0
Bullbead minnow	<u>Neascus</u> spp	. 1	25.0	-	-	1	25.0		_	-	_	_	_	-	-	-	_
River carpsucker	Croded fins	ì	8.3	٥	۵.0	Ü	0.0	Ð	0.0	ì	100.0	6	0.0	-	-	G	0_0
Quillback	Deformed mouth	. 1	33.3	-	~		-	0	0.0	1	50.0	-		-	-	•	
Smallmouth buffalo	Eroded fins	1	16.7	Ú	0.0	-	_			1	100.0	. 0	6.6	Ð	0.0	-	-
Silver redhorse	Eroded fins Deformed fins	l l	25 .0 25 .0	-	- -	ປ ປ	0.0	l 1	50.0 50.0	_	-		-	-	-	<u>-</u>	_
Colden redherse	Eroded fins Lesions	3 1	15.0 5.0	Ü	0.0 0.0	0 0	$0.0 \\ 0.0$	ΰ υ	0.0 0.0	-	-	0 0	0_0 0_0	 -	- -	3	42.9 14.3
Shorthead redhorse	Deformed head	1	16.7	_	-	ū	0.0	e	0.0	-	-	0	0.0	-	-	1	50.0
Yellow bullhead	Eroded fins	1	50.0	-	-	-	-	-	-	ì	50.0	-	-	_	•	-	

⁽a) Total catch represents combined catch from all locations and all methods.

⁽b) Species not collected.

TABLE 3.3-37 INCIDENCE OF PHYSICAL ABNORMALITIES, DISFASE OR PARASITES OF FUSH COLLECTED AT ALL SAMPLING LOCATIONS NEAR THE DRESDEN STATION, 3-5 AUGUST 1981.

			[otal	Catch ^a				Number	hna -	Percer	st Af	fectedy	(Samp)	ling Lo	catic) f E		
	Physical	Utsease or	Nomber	Percent		1		2		5		δ		7		9		10
<u>Species</u>	<u>Abnormality</u>	Parasite	Affected	Affected	4	<u>z</u>	1	<u> </u>	<u>8</u> .	7	#	<u>r</u>	Į.	<u>r</u>	표	7.	#	*
Carp	Eruded fins		3	5.5	Ð	0.0	_b	_	0	0.0	1	25.0	D	0.0	0	0.0	2	22.2
•	Knothead		1	18	U	0.0	-	-	1	15.7	Ü	0.0	Ð	0.9	ū	0.0	0	0.0
		Lernea spp.	1	1.8	0	0.0	-		Ü	0.0	Û	0.0	ល	ល.ប	1	20.0	Q	0.0
River carpsucker	Eroded flus	,	4	57 .1.	-	-	•••	•	0	0.0	3	60.0	1 3	0,001	-	~	-	~
Golden redborse	Eruded fins		2	25.0	1	50.0	_	 .		_	-,		_	_	1	<i>75</i> .0	Ü	0.0
	Lesion		1	12.5	0	0.0	•	-	_	~	-	-	~		1	25.0	ß	0.0
Channel catfish	Lesion		1	33.3		_	1	50.0	0	0.0		_	_	_	~	_	_	~
		Leech	l	33.3	-		1	50.0	0	0.0		-	~	-	-	~	-	-
Freshwater drum		Lecch	1	6.3	_	-	1	20.0	Ð	0.0	_	-	9	0.0	0	0.0	-	-

⁽s) -lotal catch represents combined catch from all locations and all methods.

⁽b) Species not collected.

TABLE 3.3-38 INCIDENCE OF PHYSICAL ABMORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS NEAR THE DRESDEN STATION, 18-20 AUGUST 1981.

			Total	Caich ^a				Number	and	Percer	ıt Aff	ected/	'Samep	ling Lo	catio	វា		
<u>Species</u>	Physical Abnormality	Disease or Parasite	Number Affected	Percent Affected	7	1 \$.	Ĩ	2 %	7	5 <u>16</u>	3	<u>6</u> <u>Z</u>	- 3	<u>7</u> <u>%</u>	<u> </u>	<u>9</u> <u>%</u> -	7	10
Gizzard shod	Eroded fins		· 1	0.6	0	0.0	0	0.0	0	0.0	1	4.3	0	0.0	9	0.0	0	0.0
Carp	Eroded fins		5	7.6	2	10.0	۵	0.0	1	20.0	-p	~	2	12,5	0	0.0	. 0	0.0
River carpsucker	No fins		1	14.3	-	-		-	-	-	1 1	0.00	Ü	0.0	-	-	0	0.0
Goldon redhorse	Eroded fins Ulcers Skoliosis		4 1 1	36.4 9.1 9.1	0 0 0	0.0 0.0 0.0	0 0 0	$0.0 \\ 0.0 \\ 0.0$	1 1 1	33.3 33.3 33.3	- -	 	1 0 0	0.0 0.0 0.0	-	- -	2 0 0	40.0 0.6 0.0
Shorthead redborse	Eroded fins		2	22.2	ì	33.3	-	-	-	-	~	-	a	0.0	-	-	1	33.3
Green sunfish	Eye missing		i	3.0		-	~	-	_	•	1	3.2	0	0.0	-	-	-	~

⁽a) Total catch represents combined catch from all locations and all methods. (b) Species not collected.

TABLE 3.3-39 INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASTIES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS NEAR THE DRESDEN STATION, 8-10 SEPTEMBER 1981.

	- - 1		Total	Gatch ^a				Numbar	and	Darrant	. AFE	ected/Sa	ir Feann	na Loca	tian			
Species	Physical Abnormality	Disease or Parasite	Number Affected	Percent Affected	<u>#</u> "	1_ <u>%</u>	¥_	2 8-	<u>#</u>	5 3.	¥.	6	<u>यम्</u>	7		<u>**</u>	<u>#</u>	10 3
Gizzard shad	Deformed mouth	ì.	1	0.6	0	0.0	0	0.0	0	0.0	0	0.0	1	2.6	0	0.0	0	0.0
Goldfish	Ecoded fins		1	_h	_	-	-	_	-	~	-	_	-	_	-		1	100.0
Carp	Deformed fins Knothead Eye missing		7 2 1	15.6 4.4 2.2	4 1 0	35.4 9.1 0.0	0 0	0.0 0.0 0.0	1 0 0	11.1 0.0 0.0	1 0 1	14.3 0.0 14.3	1 1 0	12.5 12.5 0.0	0 0 0	0.0 0.0 0.0	0 0 0	0.0 0.0 0.0
Smallmouth buffalo	Eroded fins		1	30.3	0	0.0	_	-	**	-	1	100.0	-	_	0	0.0		-
Shorthead redhorse		Ichthyoph- thiriasis (white sp		8.3	1	33.3	Ō	0.0	Ü	0.0	-	-	•	-	0	0.0	0	0.0
Channel catfish		Leeches	2	66.7	-	-	2	66.7		-	-	-	-	-	-	-	-	-

⁽a) Total catch represents combined catch from all locations and all methods.

⁽b) Species not collected.

TABLE 3.3-40 INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS NEAR THE DRESDEN STATION, 21-23 SEPTEMBER 1981.

			Total	Catch ^a			ı	Number	and I	ercent ²	Affe	c ted/Sa	anp T fi	ng Loca	tion	l		
Species	Physical Abnormality	Disease or Parasite	Number Affected	Percent Affected	<u> </u>	<u>1</u> - <u>z</u> -	*	<u>L</u>	ř	2	<u> </u>	6 <u>%</u>	<u>A</u> _	<u>7</u> - <u>z</u> -	Ŧ.	<u>a</u> <u>k</u> .	<u>₹</u>	10 <u>K</u>
Gizzard shad	Croded fin		1	0.3	Q	0.0	0	0.0	0	0.0	ı	4.5	0	0.0	Q	0.0	0	0.0
Carp	No pelvic fin		1	2.4	Q	9,0	_b		Q.	0.0	0	0.0	σ	6.0	1	16.7	a	0.0
Carp x Goldfish	Eroded fins		ŀ	7.7	0	9.0	-	-	~	-	-	-	0	0.0	1	14.3	0	0.0
Smallmouth buffale	No caudal fin		1	50.0	0	0.0	_	-	_	_	_	-	-	_	-	-	1	100.0

⁽a) Total catch represents combined catch from all locations and all methods.

⁽b) Species not collected.

TABLE 3.3-41 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY ELECTROFISHING AT LOCATION 1 NEAR THE DRESDEN STATION, 1974-1981.

		1974			1975 ^b			19/6			1977 ^l) 		1978 ⁰	I 		1979€			1980 ^f	· 		1981	9
<u>Species</u>	No.	CPE.	Catch	No.	Annual CPF	Catch	No.	Annual CPE		No.	Annua I CPF	% of Catch	No.	Annual CPE	% of Catch	No.	Annual CPE	L of Catch	No.	Annita T CPE	% of Catch	No.	Annual CPE	9. Ça
DMANOSE GAR	-	ш	-		-	_	-	-	_	_	_		_	_	-	-	_	_	_	n.	_	_	_	
KIPJACK HERRI N G	-		-	-	-	-	-	-	-	_	-	-	1	0.6	0.6	-	-	-	L	-	-	-		
.FVJFE	_			_=			.=						-			Ξ.			. =				4	
177ARN SHAD	3	2-8	2. 3	62	57 .0	27.7	42	15.8	28.7	102	102.0	40.1	47	3 0.3	27.2	7	2.0	4.3	15	15.0	19.7	77	43.9	
MONEYF	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	_	-	~ -	
ASS PICKERF1. RIHERN PIKE	-		-		-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	T	0.5	
KELL UN GE	-	-		-	_	-	_	-	-	-	_	-	-	-	-	_	-	-	_	-			0.6	
RIMIDAE	_	-	-	_	-		-	•	_	-	•	-	-	-	-	-	-		-	•	-	1	U-0	
NTRAL STONFÆGLLÜR	_	_		-	_	_		-	_	-	-	_	-	-	_	ī	0.5	1.1	ī	1.0	19.7	-	_	
DF158	48	44.4	36.6	27	24.8	12.0	17	18.5	11.6	13	16.5	6.5	24	15.5	13.9	7	3.5	7.5	4	4.0	5.3	2	1.1	
4b	63	58. B	43.1	110	101.2	49.2	59	64.3	40.4	74	99.0	33.9	42	27.1	24.3	22	11.0	23.7	14	14.0	18.4	29	15.3	
OP X GOLDFISH	-	551111	70,1	3	2.8	1.4	9	9.8	6.1	16	17.0	6.7	14	9.0	B.1	4	2.0	4.3	4	4.0	5.3	29	16.4	
.VFR CITUB			_	-			-			-	_	7.,		5.0	174 1	-		4-7		-	V.5		-	
DEM SHINER			_		_	_		_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	
FRM.D SHINER	6	5.6	4.6	15	13.8	6.7	æ	4.4	2.8	7	7.0	2.7	21	13.5	12,1	18	9.0	19.3	4	4.0	5.3	381	21.6	
ER SILMER	-	_	-	-		~	-				-							1,00						
OSI SHINER	_	_	_	_	_		-	_	-	_			_	-	_	_	-	_	_		_	_	-	
RIPED SHINER	_	_	_	_	_		_	_	_	_	_ '	-		-	_	_	-	_	_	-		_	-	
IMON SHINER	_	_		_		_	_		_	_	_	_	-	_	_	_	_	_	_		-	_	-	
TTAIL SHINER	_	_	_	_	-	_	_	_	_	_	-	_	_		-	_	_	-	_	_	-	_	_	
SHINER	_	-	_	_	-	_			_	_		_	_		-	_	_	-	_	-	-	_	-	
FIFTH SHINER	_	-	-	-	٠ 🕳	-	-	-	-	-	-	-	-	_	-	1	0.5	1.1	-	-	-	-	-	
ID SHTHER	_	_	-	٦.	-	-	-	_	-	<u>.</u>		-	-	-	-	-	-	-	-	-	-	-	_	
ELCOLOR SHIPPER	-	-	-	-		-	-	-	-	~	-	-	•	-	-	٠ -	-	-	-	-		-	-	
UN LHUSE MENHON	-	_	-	-	-	-	-	-	••	1	1.0	0.4	1	0.6	0.6	10	5.0	10.8	2	2.0	2.6	-	-	
CHEAD HINNON	-	_	-	-	-	-	-	-	-	-	_	-	-	-	•	-	-	-	-	-	-	-	-	
LILAD MINNOW	_	-	_	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	_	
FEK CHUU	-			-	-	-	_	-	-	-	. -		-	· ·		-	-	-	_	-	-		2.7	
FER CARPSUCKER	4	3.1	3. 1	-	-	-	_			1	1.0	0.4	4	2.6	2.3	-	-	-		~	07.6))	0.6	
(I.EBACK	1	0.9	0.7	-	-	-	2	2.7	1.4	-	-	-	-	-	-	_	-	-	21	21 •G	27.6	1	0.6	
SHFIN CARPSUCKER	-	-	-	-	•	-	-	-	-	-	• • • • • • • • • • • • • • • • • • • •	-	- :		~ -	-		~~~		1.0	1.3	,	0.0	
ITE SUCKER	-	^	-	_	-	-	_	~~		-			4	0.6	0.5	2	1.0	2.2	1	1.0	1.3	- 7	0.6	
ALEMONTH BUILTALO	-	-	-	_	•	-	=	3, 3	2.1	1	1.0	0.4	-	_	-	2	1.0	2.2		-	_	1	0.0	
MOUTH BUFFALO	_	-	-	_	-	-	-	-	-	-	-	_	-	-		-	-	-	-	-		đ	2,3	
VER REDHORSF VER REDHORSF		-	_	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-		_	-	-		
ACK REDIIORSE	-	•		-	_	_	-	-	_	-	_	_	-	-		_	-	_	_	-		_	_	
DEN REDHORSE	_	_	-	-	_	_		_	_		1.0	0.4	1	0.6	0.6	_	_	_			_	7	4.0	
KYNLAU REDHORSE	-	_		_	_	_	_	_	_	-	5.0	2.4	1	900	0.0		_	-	i	1.0	1.3	5	2.9	
HARSE SPP.	-	_	_	_	_	-	_	_	_		-		_	_		2	1.0	2.2	_			,		
CX BULLILLAD	_	_		_	_	_	1.	1.1	0.7	_	-	_	_		_	4	2.0	4.3	6	6.0	7.9	1	0.6	
I ON BULLHEAD	_	_		_	_	_	_		_	_	_	_	_		_	_	-	-	_		-		-	
WHEL CATELSH	_	_	_	_		_	_	_	_	1	1.0	0.4	_	_	_	-		_	_	-	-		-	
INICAT	_		_	_	_	_	_	_	٦.	_	-	-	_	_	_	-		_	_	-		-	-	
NYHLAU CATFISH	_	-	_	_	-	_	_	-	-	-	_	-	_	-	_		-	-	-	_	-	-	-	
NIT-PERCH	_		-	_	•	-	-	-	-	-	****	-	_	-	u	_	-		_		-	_	-	
NOK SILVERSIDE	_	-	-	-	-	-		-	_	-	-	-	-	-		_	-	-		_	•	-	-	
ITF DASS	-	-	_	-	•	-	-	-		-	-	_	-		-	-	-	-	-	-	-	-	-	
LOW BASS	-	-	-	-	-	_	-	-	-	-	-	_	-	•	_	-	-	-	-	-	-	-	-	
CK BASS	-	-	-	-		-			-	-		-	-	-	-	-	. •	-	-	-	-	-	-	
FLN SUNFISH	1	0.9	0.7	2	1.8	0.9	- 5	5.5	3.4	1	1.0	0.4	-	3.9	3.5		0.5	1.1	-	-	_	_	-	

717-0

.

TABLE	3.3-41	(CONT.)
76 ^C	1977	,b

		1974	Γ	-	19/5	,		1976 ⁰	!		1977 ^b		<u> </u>	1978 ^d	<u></u>		19790	!		1980			1981	-
Species	No.	ChFu	t of Catch	Nu.	Annua T CPE		No.	CPE CPE	E of Catch	# 0.	Annual CPE	t of Catch	No.	Annua! CPE	% of	No.	Annual CPE	% of Catch	No.	Annual CPE	% of Catch	Ho.	Annual CPE	% of Catch
BAWLK1#ZEEB	_	_	-	1	9.9	0.4	_	_	_	_	_	-	_	-	-	-	-	_	_	-	_	_	-	-
URANGESPOTTED SUMFISI	۱ -	-	-	-	-	-	_	_	_	_	-	_	1	0.6	0.6	2	1.0	2.2	1	1.0	1.3	-	-	•
RLUEGILL	Ţ	3.1	3.7		_	-	2	2.2	1.4	_	_	-	_	_			-	_	1	1.0	1.3	1	0.6	0.5
LONGEAR SUMFISH	-	-	_	_	-	-		_	-		-	_	_	_	_	-	-	-	_		_	-	-	-
REDEAR SUNFISH	_	-	-	_	-	-	-	-	_	-	-	-	_	_	-	-	-	-	-	-	_	-	-	-
SMALLMOUTH BASS	-	-	-	-	-	-	-	-		1	1.0	0.4	1	0.6	0.6	3	1.0	2.2	1	1.0	1.3	2	1.1	0.9
LARCEMOUTH BASS	1	0.9	0.7	2	1.8	0.9	-	-	-	_	_	_	1	0.6	0.6	-	-	-	-	-	-	2	1.1	0.5
SUNFISH MYBRID	•	•		_	_		_	-	-	-		_	_	-	_	-		-	-	•	-	1	0.6	0.1
WHITE CRAPPIE	•	-	-	_	_	-	_	_	-	~	-	-	4	2.6	2.3	_	_	-	-	-	-	1	0.6	0.3
BLACK CRAPPIE	-	-	-	-	-	_	-		-		-	_	2	1.3	1.2	1	0.5	1.1	-	_	-	-	-	_
DRANGETHROAT DARTER	•	-	-	-	-	-	-	-	-		-	_	-	_	-	1	0.5	1.1	-		-	-	-	-
YELLON PERCH	-	-	_	-	-	-	-	-	-	_	-	-		-		-	-	-	-	-	-	-	-	-
1,0GPERCH	-	-	-	-		-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	
WALLEYE	-	_	-	-	-	_	_	-	-	-	-		-	-	_	-	-	_	-	-	•	-	-	-
FAFSHNATER DAUM	-	-	-	-	-	-	2	2.2	1.4	-	-	-	1	0.6	0.6	-	-	-	-	-	-	4	2.3	1.5
TOTAL NUMBER	131			222			146			225			172			B4			76 13	•		213		
NUMBER OF SPECIES TOTAL AVERAGE	à			9			10			12			16			16			13			19		
ANNUAL CPE		121.2			204.1			159.3			254.5			110.6			46.5			76.0			120.6	

⁽a) Collection periods were in March, June, August, and Movember.
(b) Collection periods were in March, May, August, and November.
(c) Collection periods were in Harch, May, and August.
(d) Collection periods were in May, August, and Movember.
(Collection periods were in May, June, August, and Movember.
(f) Collection periods were in May, July, and August.
(g) Collection periods were in June, July, August and September.
(h) Represents average calch per hour of electrofishing for year.

		1974 ^a			1975 ^b)		19760			1977 ^l	Þ		1978 ^d	i		1979 ⁸	2		1980 [†]	F		1931 [!]	g
Species	No.	Annua!		No-	Annua? CPE		No-		% of Catch	No.	Annual CPE		Mo.	Annual CPE	% of Catch	ж.			Ho.	Annual CPE	% of Catch	Nn.	Annual CPE	
										<u> </u>														
ONGWOSE GAR KIPJACK MERRING	_	_	-	1	0.9	0.6	ĩ	1.1	C_6	_	-1	_	-	-		_	•	-	-	-	-	-	-	-
ENGLE	_	_	_	-	-	4.0	-		-	_	_	_	_	-	_	_	_	_	_	-	-	_	-	_
ZZARD SHAD	35	28.0	35.7	99	85.1	61.0	915	103.6	55.2	143	140.3	53.2	197	120.6	61.2	18	9.0	12.6	9	9.0	11.2	161	92.0	63.
DOMEYE	1	9.6	1.1	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
RASS PICKEREL		-	-	-	-	-	-	-	-	-	-	-		_	-	-	-	-		-	-	-	-	
ORTHFRN PIKE USKELLUMGL	_	_	-	-	_	_	-	-	_	_	_	<u>-</u>		-	-	-	-	_	-	-	-	-		_
PRINIDAE	_	••	_	_	_	_		_	_	_	_	_	_	_		_	_		_	_	-	Ī	_	-
MIRAL STONEROLLER	-	-	_	_		_	_		_	_	_	_	_	_	_	_	_		_	_	_	_	_	
DEDFISH	1	0.8	1.0	-	-	_	1	1.1	0.6	3	2.8	1.1	2	1.2	D.6	-	-	-	-	_	-		-	-
ARP	17	13.6	17.3	2/	23.2	15.6	31	33.8	18.0	45	44.0	15.7	77	20.2	10.2	7	3.5	4.5	-	-	-	4	2.3	i.
RP X GOLDFISH	-	-	-	-	-	-	-	-	-	-	-	_	1	0.5	0.3	u	-	-	-	-	-		-	-
ILVER CHUB DEDEN SHINER	-	-	_	_		-	_	_		_	_	_	-	-	-	ī	0.5	0.7	-	-		-	-	
MERALD SHINER	1	8.0	1.0	3	2.6	1.8	11	12.0	6.4	6	5.6	2.1	- 5	3.7	1.9	14	7.0	9.8	18	18.0	22.5	12	6.9	4.
IVER SHINER	_	-	-	Ĭ.	_	-	-	_	_	_			_		-		-	-	_				_	-
IOST SHINER	_	-	-	_	-	-		-	-	-		-	-	-	-	_	-		-	_	-	-	-	-
FRIPED SWINCE	-	-	-	-	-	-	-		-	-	-	-	-	-	-	_	-	_	-	_	-	-	-	•
MAN SHINER	- '	-	_	-	-	-	-	-	-	-		-	_	-	-	-	-	-	3	3.0	3.7	-	-	-
OTTAIR SHINER D SNIMER	_	-	_		_		_	_	-	_	-	_	_	-	_	-	-		-		_	_	-	_
OTTEN SHINER	_	_	_	_		_	-	_	_	1	0.8	0.3		_	_	2	1.0	1.4	1	1.0	1.2	1	0.6	Đ.
NU SHINER	_		_	-	_	_	ı	3.1	0.6	_	-		_	_	-	5	2.5	3.5	ī	1.0	1.2	-	_	
TEELCOLOR SHINLR	-	-	~	-			-	-	-	-			-	-	-	-	-	-	-			-		
UNITADSE MINNOH	-	-	-	1	0.9	9.5	-	~	-	3	2.6	0.1	-	-	-	12	6.0	8.4	2	2.0	2.6	2	1.1	0.
THEAD MINNON	-	-	~	-	1.7	1.2	-	-	-	-	-	-	-	0.6	0.3	16	8.0	11.2	19	19.0	23.7	7	0.6	0.
ULLILAD MINNON RFFK CHUU	_	-	_	-	1.,	1.2		_	_	_	-	_	1	U. 0	0.3	-	-	11.2	- 15		- C2.1	_	-	-
VER CARPSUCKER	5	4.0	5-1	2	1.7	1.2	2	2.2	1.2	8	7.8	3.0	9	5.5	2.8	1	0.5	0.7		-	-	2	1.1	D.
ITE! BACK	1	0.8	1.0	-	-	-	1	1.1	0.6	1	1.0	0.4	1	0.6	0.3	t0	5.0	7.0	2	2.0	2.5	Ŀ	0.6	0-
IGHFIN CARPSUCKER				-			-	-	-	-		~ .	-	-	-	-	-	-	-	-	-	-	-	-
HIE SUCKER	10	8.0	10-2	3	2.6	1.8	-	"	-	1	1.0	0.4	_	-	-1	-	-	-	-	-	-	_	-	_
KALI,MONTH BUFFALD IGNOVÍM DUFFALO	Į.	$\begin{array}{c} 0.8 \\ 0.8 \end{array}$	1:0 1.0	3	2.6	1.8	_	-	_	-	-	_	_	_	-		_	_	_	-	_	_	_	_
IN YER REDITORSE	- t	7.0	-	_	_	_		_	_	7	6.0	2.3	3	1.8	0.9	2	1.0	1.4	-	-	_	14	8.0	5.
TVFR REDIIONSE	_		_	_	-	_	_	_	_	-		-	_	_	_	_	-	-		-	-	-	_	-
ACK REDHORSL	_	-	-	-	-	-	-	-	-	-	-	-	-	•_	-	-			:	-		- 5	~ ~	
MOFN REDIIORSE	-	•	-	-	-	-	-	7.5		- 10	70.0		li O	3.7	1.9	2		1.4	1 15	1.0 15.0	1.2 18-7	Q	2.9 5.1	2. 3.
NORTHEAD REDHORSE	1	- 4.8	٠.		3.4	2.4		7.6	4.0	20	13.6	7.1	24	14.7	7.4	.3 5	1.5 2.5	2.1 3.5	13	13.0	ru-1	-	J. Z	-
EDHORSE SPP. LACK BULLHEAD	0	470	6.1	4	J.**	2,4	_	_	_	_	_	0.5	_	_			Z.u	3.7	_		_	_	_	_
ELLOW BELLHEAD		_	_	_	_	-	_	4	-	_	_		_		_		_	_	-	-	_		-	-
HANNEL CATETSH	4	3.2	4.1	3	2.6	1.8	2	2.2	1.2	1	1.0	0.4	3	1.8	0.9	ı	0.5	0.7	-	-	-	5	2.9	2.
TONECAT	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ATHEAD CAIFISH	-	~	-	-	-	-	-	-	-	~	3. 3	1.2	-	-	-	12	6.0	л. Я. 4	-	-	_	_		-
ROUT-PERCH ROOK SILVERSIDE	_	_	-	_	_	_	_	-	-	- -	J- J	1.5	-	-	-	12	6.0	4.4	-	-	_	_	-	_
ILLE BASS	2	1.6	2.1	ž	1.7	1.2	_	_	-		1.0	0.4	_	_	-	1	0.5	0.7	_	-	_	-	-	-
ELLON BASS	_	_	_	_		_	-	-		1	L-0	0.4	_	-	_	_	-	_	-	-	-	4	2.3	1.0
OCK BASS	2	1.6	2.1	2	1.7	1.2	-		-	Ŀ	0.8	u. I	6	3.7	1.9	5	2-5	9.5	1	1.0	1.2	3	1.7	1.
REEN SUMFISH	Ź	1.6	2.1	2	L.7	1.2	5	5.5	2.9	6	5.2	2.0	2	1.2	0.6	1	ก.5	0.7	2	2.0	2.5	4	2.3	1.4

TABLE 3.3-42 (CONT.)

		1974 ²			1975 ^b	•		1976 ⁰			1977 ^b	1		1978	Ł		1979 ⁶			1980 ¹	·		1981	ł
Species	Ho.	Annua (1 of Catch	Na.	Annua) CPE	% of Catch	No.	CPE.	Catch	No.	Annua I CPE	1 of Catch	ĸo.	Antwa1 CPE	% of Catch	No.	Annual CPE	Catch	No.	Angua) CPE	1 of Catch	No-	Annual CPE	% of Cata
PUMPKINSEED	_	_	_	_	_	_	_	_		-	_	_	_	_	_	_	_	-		-	_	1	0.6	O.
RANGESPOTTLU SUNFIS	ዚ –	-	-	-	-	-	_	-	-	10	8.5	3. 2	_	-	_	б	3.0	4.2	2	7.0	2.5	1	0.6	П
LNEGILL	_	_	_	í	0.9	0.6		-	_	3	2.7	1.0	ı	0.6	9.3	_	_	-	1	1.0	1.2	-	_	
UNGEAR SUNFISH	_		_	_	-	-		-	_	-	_	-	_	_	_	_	_	-	_	-	_	-		
EDEAR SUND'150	_	_		_	_	_	_	_	_	-		_		~	_	1	0.5	0.7	_	_	-	_	-	
MALLMOUTH BASS	5	4.0	5.1	3	2.6	1.8	11	12.0	₹.4	7	6.2	2.4	20	12.2	6.2	17	8.5	11.9	2	2.0	2.5	9	5.1	;
ARGENOUTH BASS	3		3,6	_		-	1	1.1	0.6	i	0.8	0.3	1	0.6	0.3		-		_			_		
MFISH HYBRID	_		_		_	_		_		ĩ	0.8	ŭ.3	-	-	-	_	_	_	_	-	_		_	
HITE CRAPPIE	1	8.0	1.0	_	_	_	_				-	-	-	_	_	1	0.5	0.7	_	_	_	_	_	
ACK GRAPPIE	_	_		_	_		_	-	_	_			_		_	-	-	_		_	_		_	
RANGETHROAT DARTER	_	_	_	_	_	_	_	_			_				_		_	_	_	-	_		_	
LLON PERCII	_	_	_	_	_	_	_	_				_		_	_	_	_	_	_	_	_		_	
3GPERCII		-		_		_		_	_	~	1.7	0.6	- 1	0.6	0.3	_			_		_			
ALLEYE		_	_		9.9	0.6	_	_	-	۵.	1+1	7.0	•	u.u	0.3	1		_				-	_	
RESHNATER DRUM	_	_	<u></u>	3	2.6	1.8	3	3.3	1.8	_	_	-	5	3.)	1.2	3	_		-	_	_	14	B.0	į
STAL NIMBER	98			162			172			276			322			143			79			253		
IMBER OF SPECIES	17			17			14			22			18			22			15			19		
ANNUAL CPE		78.8			139.4			187.7			263.5			197.8			71.5			80.0			144.6	

⁽a) Collection periods were in March, dune, August, and Movember.
(b) Collection periods were in March, May, August, and Movember.
(c) Collection periods were in March, May, and August.
(d) Collection periods were in May, August, and November.
(e) Collection periods were in May, June, August, and November.
(f) Collection periods were in May, July, and August.
(g) Collection periods were in June, July, August and September.
(h) Represents average catch per hour of electrofishing for year.

TABLE 3.3-43 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY ELECTROFISHING AT LOCATION 5 NEAR THE DRESDEN STATION, 1974-1981.

		1974			1975 ^b			1976 ⁰			1977 ^l			1978			1979 ⁶) 		1980			1981	
Species	No.	Annual CPLh	% of Catch	No.	Annual CPE	Catch	No.	Annual CPE	a of Catch	No.	Annual CPE	2 of Calch	Mo.	CPE CPE	& of Catch	Mo.	Che Vuura I	% of Catch	Ko.	Annual CPE	% of Catch	No-	Annua] CPE	<u>Ca</u>
LUNGNOSE GAR	1	0.9	0.6	-	_		_	_	-	_	_	_		_	-	_	-	_	_	_		_	_	
SKIPJACK HERRING	_		_	_	-	_	_	_	-	1	1.0	0.6	_	_	-	_		-	-	_	_	-		
ALENIFF		_	_	_	_	-	_	-	_	_			_	-	_	-	_		_	-	_	-	-	
GIZZARD SHAD	55	50.9	35.0	21	21.0	24. I	43	52.2	26.7	75	83.0	49.5	113	77.0	46.7	6	3.0	4.8	Я	8.0	13.1	161	95.7	Ę
OUNEYE		30.3		L		L T. L	70	DE LE	LUIT	10	00.0	-122	113	*****	4071		5. 0	7.0	•••	0.0	1 3. 1	101	33.1	•
HASS PICKEREL		_		_	_		_	_		7	1.0	0.6	-	-		_	-	_	_	_	_			
DRTHERN PIKE		_	•	_	_	-	-	_	-	1	1.0	U.U	_	-	_	-	-	_	_	•	_		_	
	-	-	-	_	-	-	_	-	-	-	_	•	_	~	-	-	•	-	-	-	•	-	-	
USKFLLUNGE	-	-		-	-	•	-	-	-	_	-	-	_	-	•	-	-	-	-	-	•	-	•	
YPRINIDAE	-	-	-	_		-	-	-	•	-	-	-	_	_	-	-	-	•				-	-	
ENERAL STONEROLLER	-			-		,	=			-			-	-	-	-	-		1	1.0	1.6	-	-	
OLDFISH	2	1.9	1.3	.1	1.0	1.1	3	4.0	1.9	1	1.0	0.6	_	-	-	2	1.0	1.6	-	•	-		-	
4RP	79	73.1	50.3	37	37,Q	37.0	85	113.1	52.8	32	32.6	19.4	44	30.0	18.2	13	6.5	10.5	7	7.0	11.5	4	2.3	
ARP X GULDFISH	-	~	-	•	_	-	- 1	1.3	0.6	2	5.0	1.2	-	-	~	_	-	-	-	-	-	1	0.5	
ILVLR CHUB	-	_		_	-	_	-	_	_	-		_	_	-	-	-	-	-	-	-	-	-	_	
DLDEN SHINER	-		_	1	1.0	1.1	-	_	-	_	-	-	~	-	-	_	-	-	-	-	-	-	-	
MERALD SHIMER	2	1.9	1.3	1	1.0	1.1	6	8.0	3.7	16	17.0	20.1	31	21.1	12.8	42	21.0	33.9	18	18.0	22.5	77	46.6	
LYER SHINER	-	_		_		_	_	_		_				-		_		-		_	_	_		
LOST SHINER	_	_	_	_	_	_		_	_	_	_	_	_	-	_	_	_	_		_	-	_	-	
TRIPED SILINER		_	_	_			_	_	_	_		_	_	_	_	_	_	_	_	_	-	_		
OMMUN SHINER	-	-	-	-	_	_	_	-	-	-	_	-	_	_	_	_	_		_		_		_	
	-	-	-	•	_	-	-		_	-	_	_	•	_	-	_		_	9	2.0	2 1	_	_	
POTTAIL SHINER ED SMIMLR	_	•	-	•	-	-	-	-	-	-	-	-	-	•	-		-	-	2	2.0	1 0	_	_	
	-	-	-	-	-	_	-	-	•	-	-	_	-	-	-	ā	a	2.4	_	-	-	-	-	
POTFIN SHINER	_	-	-	_	-	-	-	-	-	-	-	-	-	_	•	2	2.0	3.2 1.6	_	-	-	•	•	
AND SHINER	_	-	~	-	-	-	_	_	-	-	-	-	-	-	•	2	1.0	1.0	-	-	-	-	_	
TEFICOLUR SHIMFR	_	-	-	-	_	-	-	-	-	-			-	~ .			-		-	10.4	10 4	-	-	
UNITHOSE MIMMON	-	-	-	-	-	-	-	_	-	2	2.0	1.2	5	3.4	2.1	12	6.0	9.7	10	10.0	16.4	-	•	
ATHEAD MINNON	-	-	-	-	-	-	-	-	-	-	-	**	-	•	-	_			-			•	-	
ULLHEAD WIMNOW		-	_	-	-	-	-	-	_	-	_	-	-	~	-	5	2.5	4.0	?	2.0	2.3	-		
REEK CHUB	~	-	-	_	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-		
TVER CARPSHCKER	4	3.7	2.5	В	8.0	9.2	3	4.0	1.9	2	2.0	1.2	2	1.4	0.8	_	-	-	-	-	-	2	1.1	
DILLBACK	1	0.9	0.6	3	3.0	3.4	_	-	-	_	_	_	1	D.7	0.4	6	3.0	4.8	1	1.0	l6	1	០.ភ	
IGHFIN CARPSUCKEN	_	-	_	-	_	_	_	_	-	_	_	_	_	-	-	-	-	-	-	-	*	-	-	
HITE SUCKER	1	0.9	0.6	_	_	_		_		1	1.0	0.6	1	0.7	0.4	3	1.5	7-4	_	-	-	1	0.6	
RALL MOUTH BUFFALO	_	_	_	2	2.0	2.3	5	1.3	0.6	_	-		1	0.7	0.4	_	-	_	1	1.0	1.5	-	_	
ICMDUTH BUFFALO	-		_	_			_			_	_	_		_		_		_	-	_	-	_	_	
LIVER REDITURSE	_	_	_	_	_	_	_	_	_	2	2.0	1.2	4	2.7	1.6	2	1.0	1.6	_	-	_	7	4. ü	
IVER REDIKORSE	_				_	_	_	_	_							_			_	-	_	-	-	
ACK REDHORSE	_	_	•	-	_	_	-	_	-	_	-	_	_	_	-	Ī	0.5	0.8	_	_	_	-	ų.	
DLDEN REDHORSE	-	-	-	-	-	-	-	-	-	-	-		3	2.0	1.2	10	5.0	8.1	9	9.0	14.7	17	6.9	
	-		-	-	~~	~ 7		~		17	10.41	10.3	_			10		041	ź	1.0	1.6	3	1.7	
RORTHEAD REDHORSE	-	-	~~	2	2.0	2.3	f	9.3	4. 3	Tl	10.0	10_7	23	15.7	9.5	_	1 19	1 6		1.0	1.0	J	1.,	
EDHORSL SPP.	Ţ	0.9	9.6	2	2.0	2.3	-	-	-	-	-	_	-	•	-	2	1.0	1.6	•	-	-	-	D_6	
LACK BULLHFAD		-	-	-	-	-	-	~	-	*	-	-	-	-	-	-	-	-	-	-	-	Ţ	4.0	
ELLOW BUILLHEAD	-	-	-	-	-		-	_		-	-	_	_	-	 -	~	-	-	-		•	-	-	
HANNEL CATETSH	-	-	-	1	1.0	1.1	4	5.3	2.5	2	2-5	1.3	1	0.7	0.4	-	*	-	-	-	-	-	-	
TONECAT	_	_	-	_		-	1	1.3	0.6	-	-	-	-	-	-	-	-	-	-	-	-	•	-	
NATHEAD CATFISH	-	_		-	-	-	_	-	-	-	-	-	-	•	-	-	_ ₩		-	•	-	-	•	
ROUT -PERCH	-	-		-	-	-	-	-	-	-	-	-	-	-		1	0.5	0.8	-	-	-	-	-	
ROOK SILVERSIDE	_	-	_	-	_	_	_	_	-	_	-	-	-	-	~	-	•	-	_	-	-	-		
WHETE BASS	2	1.9	1.3				- 1	1.3	0.6												_	1	0.6	

TABLE 3.3-43 (CONT.)

··· K		1974 ⁶	·		1975 ^b	<u> </u>		1976			1977 ^h			1978	·		19/9	<u> </u>		1980			1981	
Species	No.		% of Catch	No.	Annua! CPE	i of Caten	No.	Annual CPE	% of Catch	No.	Annua! CPF		HQ.	Annual CPE	% of Catch	No.	Angual CPE	% of Catch	No.	Annual	% of Catch	 <u>No-</u>	Annual CPE	% of Catch
YELLON BASS	_		_	-	_	_	_	_		_	_		-	_	-	_		-	-	•	-	2	1.1	0.6
ROCK BASS		-	-	-	-	-	_	_	-	_	-	-	-	_	-	1	0.7	0.4	4	2.0	3.2	3	1.7	1.0
GREEN SUMFISH	5	4.6	3.2	ι	1.0	1.1	ŀ	1.3	0.6	_	-	-	1	0.7	€1.4	-	-	-	-	-	_	_		_
PISMPKINSEED .	-	_	-	-	-	-	_	-	_	_	-	-	-	-	_	-	•	-	_	-	-	-	-	-
ORANGE SPOTTED SUNI 1S	II 🛓	9.9	0.6	-	-	_	_	-	-	1	1.0	0.6	-	-	-	1	0.5	0.8	-	•	-	-	-	_
BLUEGIA),	1	0.9	0.6	2	2.0	2.3	1	1.3	0.6		-	-	-	-	-	-	-	-	-	-	-	1	0.6	0.3
LONGEAR SUMFISH	-	-	-	-	-	_	-	-	_		_	-	•	-	-	-	-	-	-	_	-	-	-	-
REOFAR SUMFISH	-	-	-		-	-	_	_		-	-	-	_	-	•	-	-	-	-		-	-	-	-
SMALLMOUTH BASS	-	_	-	5	5.0	5.7	4	5.3	2.5	-	-	-	11	7.5	4.6	6	3.0	4.8	i	1.0	1.6	5	2.9	1.6
LARGEMOUTH BASS	2	1.9	1.9	_	_		_	_	_	i	1.0	0.5	_	-	-	1	0.5	0.8	-		-	-	-	-
SUNFISH HYBRID	-	-	-	-	-	-	_	-		-	-	_		-	-	_	-	_	_	_	-	_	-	
WHITE CRAPPIL	_	-	-			-	-	_		-	-	_		-	-	1	0.5	0.8	_	_	-	1	0.6	0.3
BLACK CRAPPIE	-		-	-		-	-			-		_		-		-	•	-	_	_	_	_		-
ORANGETHROAT DARTER	-	~	-	-	-	-	-		-	-		-	-	-		-		-	-	-		_	-	-
YELLOW PERCH	-	-		-	-	-	-	_	-	_	_	-	_	_	_		•		-	_	_	_	-	-
LOGPERCH	_	•	-	-	-		_		-	1.	1.0	0.6	-	-	-	-	_	_		-	-	1	0.6	0.3
WALLEYE		-	-	-	_	-	-	-	-	_	-	-	-	-	-	_	-	•	•	-	-	-	_	_
FRESHWATER DRUM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8	4.6	2.6
TOTAL NUMBER NUMBER OF SPECIES TOTAL AVERAGE	157 13			87 13			161 13			157 15			241 15			121 19			65 12			302 17		
ANNUAL CPF		145.3			87.0			214.0			167.8			165.0			62.0			61.0			178.9	

⁽a) Collection periods were in March, Jume, August, and November.
(b) Collection periods were in March, May, August, and Muvember.
(c) Collection periods were in March, May, and August.
(d) Collection periods were in May, August, and November.
(e) Collection periods were in May, Jume, August, and November.
(f) Collection periods were in May, July, and August.
(g) Collection periods were in May, July, August and September.
(h) Represents average catch per hour of electrofishing for year.

TABLE 3.3-44 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY ELECTROFISHING AT LOCATION 6 NEAR THE DRESDEN STATION, 1974-1981

		1974	a		1975 ¹	b		1976 ^C	:		1977 ^b	•		1978 ⁰	1		1979 ⁶	•		1980 ¹	f		1981	9
		Annua 1	10 2		Annial	16 of		Anniia î	2 of		Annual	7 0		- Anniiat	* oF -		Annua	T% oF `		Annual	2 01		Launna	₹ of
Species	NO.	CPEh	Catch	No.	<u>CPE</u>	Catch	No.	CPE	Catch	NO.	ChE	Catch	No.	EPE	Ca toch	<u>Ho.</u>	CPE	Catch	<u> 110.</u>	<u> </u>	Catch	<u>Ho.</u>	_CPE	Catc
LONGNOSE GAR	-	-	-	2	1.8	0.9	-	-	-	-		-	-	. •	-	3	1.5	0.9	-	-	-	1	0.4	ű.
SKIPJACK HERRING	-	-	-	5	4.5	2.2	-		•	5	7.5	2.1	Ĺ	0.8	0.2	7	3.5	2.1	2	2.0	3.6	1	9.4	O.
ALEWIFE	_										·	. -							-			-		
GIZZARO SHAD	43	51.8	19.9	114	104.9	50.5	182	260.3	55.2	96	137_8	3 0.3	160	133.3	38.7	60	30.0	18.2	Þ	6.0	4.8	135	77.0	3.8
MOONEYE	-	~	-	_	•	-	-	-	_	-	*	-	-	~			-	-	-	-	-	_	-	
GRASS PICKEREL	-	-	-	-	•	-	-	-	-		-	-			-	~		7		_	-	~	-	
NURTHERN PIKE	-	-	-	-	-		-	•	-		-	_	-	-	-		_	-		-	~		-	
MUSKELLUNGE	-	•	-	-	**	-	~	-	-	*	-	-	-	-	-	••	-	•		-	~	ì	U.6	C
CYPRINIDAL CARACTER		•		-	-	-	-	•	-	-	•	-	-	-	^	-		-	~	-	-	1	u. o	
CENTRAL STONEROLLER	2	, -	0.0	•			~		•	-	•	~	-	0.8	0.2	5	2,5	1.5	1	1.0	0.8	3	1.7	Q
GOLDFISH CARP	_	2.4	0.9	1	0.9	0.4	1	1.4	0.3	-	- T	440	~ ~			43	21.5	13.0	5	5.0	4.0	39	22.3	è
CARP X GOLDFISH	90	115.7	44.5	42	39.6	18.6	63	90.1	19. i	39	53.2	14.8	52 4	43.3	12.6	4.3 K	3.0	13.0		1.0	4.0 0.8	3	1./	
	-	-	-	-	_	-	-	-	-	10	15.0	4.6	4	3. 3	1.0	0		3-0	1	1.0	0.0	-	1.1	
STILVER CHUB GOLDEN SHINER	-	_	-	-	_	-	-	-	-	-	_	•		-	-	-	.•	_	-	-	_	_	_	
EMERALD SHIMER		2.4	D.9	25	22.0	1	28	40.0	8.5	16	25.2		52	43.3	12.6	89	44.5	27.0	53	53.0	42.1	277	129.6	31
RIVER SITTALE	2	2.4	0.3	23	23.0	11.1	CO.	40.0	0.3	FU	23.2	6.4	72	49.0	22.0	00	4473	21.0	-11-3	33.0	46.4.6	7.71	163.9	<u>.</u>
CHOST SHIMER	-	-	-	-	-	-	-	-	-	•	-	-	_	_	•	-			-	-	_	-		
STRIPED SHIMER	-	-	-	-	-	-	-		•	•	-	•	-	^	••	_	-		_		_			
COMMON SHINER	_	_	-	_	-	•	-	-	•	-	-	-	-		-	_	_	_	_	_	_	9	1.1	
SPOTTAIL SHINER	•		_	-	_	-	•	-	-	•		•			-	_	_	_		_	_	-		
RED SHINER	_			•	-	_		•	-	-	1.5	0.4			_	_	-	_	_	_		1	0.6	
SPOTE IN SHINER	-	· · ·	-	-	-	•	-	~	-	-	1.3	0.4			_	•	0.5	0.3	_	_	_	- 4	2.3	
SAND SHINER	_	_	-	_	_	-	_	_	-	-		•	_	_	_	,	1.0	0.6	_		_		~	
STEELCOLOR SHIMER	_	_		_	_		_	-	-		_		_	_	_	-	1.00	0.0			_	_	~	
BLUNINOSE MINNOW	_			_			_			3	4.5	1.2	. 1	0.8	0.2	4	2.0	1.2	_		_	-	-	
-ATHEAD MINNOW	_	_	_	_	_	_	_	-	_	-	•			0.0		-	-		~		_	_	-	
BULL HEAD NIMMON	-	_	-		-	_		_	_		-	_	-			1	0.5	0.3		_	_	-	-	
CREEK CHUB	_	_	-	_	_	_	_	_		_	_		_		_	-	-		_	_	_	-		
RIYER CARPSUCKER	3	3.6	1.4	£	4.6	2.2	2	2.9	0.6	3	4.0	£.[1	0.8	0.2	1	0.5	0.3	_	-	/-	7	8_0	
OUTH LBACK	ĩ	1.2	0.5	ž	1.8	0.9	ī	1.4	0.3	-	_		2	1,7	0.5	7	3.5	2.1	2	2.0	1.5	3	1.7	
HIGHFIN CARPSUCKER	-		-	-			_		~~~	_	_	_			•		_		-	7	_	1	0.6	
WHITE SUCKER	1	1.2	0.5	_	-		_	-		_	_		_	_	-	-		_	_	-	-		-	
SMALLMOUTH BUFFALO	5	6.0	2.3	1	0.9	0.4	6	8.6	1.8		-	_	4	3.3	L-0	17	8.5	5.2	_	-	-	5	2.7	
BICMOUTH BUFFALU	ī	1,2	U.5	1	0.9	0.4	-	-	_	1	1.5	0.4	_	-	_	-		_	-	-	-	1	0.4	
SILYER REDHORSE	_		_	-		-	-		-	_		-	-		-	_	-	-	_	~	-	-	-	
NIVER REDWORSF	_	-	-	_	•	-	_	-	-		-	_	_	_	_	-	-	~		-	_	-	-	
BLACK REDHORSE	-	-		-	-	_	-	•	_	-	•	-	_	-		-	-	^		-	-	~	~	
GOLDEN REDHORSE	-	-	_		_	_	•	-	_	-	-	_	_	-	-	1	0.5	0.3		1.0	0.8	~		
SHORTHEAD REDHORSE	-	-	-	-	-	-	-	-		5	7.5	2.1	?	1.7	0.5	Ż	1.0	0.5	2	2-0	1.6	1	U.6	
REDHORSE SYP.	-	-	-	1	0.9	0.4	_	_	-	-	-	-		-	-	-	-	-		-	-	-	~	
ULACK BIJLI.HEAU	-		-	-	-	•	-	-	-	-	•	-	-	-	-	_	-	-	7	•		-	,	
YELLOW BUILDIEAD	-	-	•	-	-	-	-	•	-	-	~	•	-	~		_	_	-	1	1.0	8.0	2	[.]	1
CHANNEL CATEISH	_	-	-	4	3.7	1.8	2	7.9	0.6	-	-	•	2	1.7	0.5		-	7	-	^	-	-	-	
STUMECAT	-	-	-	-	₩-	-	-	~		-	-	-	-	~			-	_	~	-	-	-	0.6	
FLATHEAD CATFISH	_	-	-	-	•		-	-	-	-	-		-	••	-	-	7	-	•	-	-	1	8.6	
TROUT-PERCH	-	-	-	-	•		-	-	-	-	-	-	••	••	-	7		^	<i>-</i> -		-	-	_	
BROOK SILVERSIDE	-	. •	-	_	-	-	-		-	_	•	~		-	-	2	1.0	0.5	-	-	-	-	-	
WHITE BASS	ŀ	1.2	0.5	-	-	_	į	1.4	0.3	-	-	_	_	_	-				-	_		-	-	

TABLE 3.3-44 (CONT.)

•		1974 ⁸	1		1975 ^t	נ		1976 ⁰			1977 ^t	•		1978	di		1979 ⁶	;		1980 ¹	f		1981 ⁹	i
Species	Ho.	Annua?	% of Catch	No.	Annual CPE	8 of Catch	Ho.	Annual CPE	& of Catch	Mo.	Ainfillátí CPE	% of Catch	Ho.	Annua!	3 of Catch	No.	Annual CPE	2 of Catch	No.	Aprila 1	% of Catch	Ho.	Andua 1	"% of " Catch
	_									_	***************************************					· · · •								
YELLONI BASS	-	-	-	-	-	•	-	•	-	-	•		-	-	-	-	~	-	-	•	•	_	-	-
ROCK BASS	-	-	-	•		•	-	-	-	1	1.5	Q. ¢	-	. •	-	I	0.5	9.3	-			-	-	-
GREEN SUNFISH	35	42.2	36.2	10	9.2	4.4	24	34, 3	7.3	45	67.0	18.6	51	42.5	12.4	22	11.0	6.7	27	27.0	21.4	157	86.1	21.0
PUMPKINSEED	-	-	_		-	-	-	-	-	-		-	7	5.B	1.7	3	1.5	0.9	-	-	-	8	4.4	1.1
ORANGESPOTTED SUNFISI	н б	7.2	2.8	-	-	-	-	-	-	-		-	1	Q.B	0.2	5	2.5	1.5	1	1.0	0.8	-	-	-
BILIEGILI.	9	10.B	4.1	3	2.8	1.3	4	5.7	-	9	10.3	2.9	37	30.8	9.0	25	12.5	7.6	4	4.0	3.2	87	47.9	11.7
LONGEAR SUNFISH		-	_	-	-	_	_	-	-	_	-	-	-	-	•	2	1.0	0.6	1	1.0	0.8	_	-	•
REDEAR SUMFISH	_	-	_	-	-	-	-	~	-	-	_	-	_	-	-	-	-	•	-	-	-	-	-	-
SMALLMOUTH BASS	11	1.2	0.5	3	2.8	1.3	1	10.0	2.1	6	9.0	2.5	18	15.Q	4_4	9	4.5	2.7	13	13.0	10.3	15	8.4	2.0
LANGEMONTH BASS	9	10.8	4.1	3	2.8	1.3	5	7.2	1.5	5	7.5	2.1	15	12.5	3.6	7	3.5	2.1	5	5.0	4.D	18	9.7	2.4
SUMFISH HYBRID	-	-	-	Ą	3.7	1.8	1	1.4	0.3	2	3.0	0.8	2	1.7	0.5	-	-	•	1	1.0	B.0	3	1.6	Ð. 4
NHITE CRAPPIE	1	1.2	9.5	-	_	-	-		-	-	-	-	1	0.8	0.2	2	1.0	0.6	-	-	-	3	1.7	0.4
BLACK CRAPPIE	-	_	-		-	-	_	_	-	1	1.5	0.4	•		-	2	1.0	D. 6	-	-	-	_	-	**
ORANGETHROAT DARTER	-	_	_		-	-		-	-	-	-		-	u	-	••	-	-	-	-	-	-	-	-
YELLON PERCH	••		_	_	-	_	1	1.4	0.3	_	_	_	-				-		-	_	-	_	-	_
LUGPERCH	-	_	-		-	-	-		-	1	1.5	0.4	-	-	-	_	-	-	-	~	-	-	•	
NALLEYE	•		-	-		-	_	-	-	-	-	-	-	-	-	~	-	-	-	•	-	•	•	-
FRESHMAYER ORUM	•	-	-	-	-	-	2	2.9	0.6	2	3.0	0.8	-	-	-	1	0.5	0.3	-		-	1	0.6	0.1
TOTAL NUMBER	216			226			324			251	•		414			330			126			7.30		
NUMBER OF SPECIES TOTAL AVERAGE	16			15			15			17			18			27			15			24		
AMNUAL CPE		Z60.l			207.9			471.9			360.0			344.7			165.0			126.0			410.1	

⁽a) Collection periods were in March, June, August, and Hovember.

⁽a) Collection periods were in March, May, August, and November.
(c) Collection periods were in March, May, August, and November.
(d) Collection periods were in May, August, and Movember.
(e) Collection periods were in May, June, August, and Movember.
(f) Collection periods were in May, July, and August.
(g) Collection periods were in June, July, August and September.
(h) Represents a periods were in June, August and September.

⁽h) Represents average catch per hour of electrofishing for year.

TABLE 3.3-45 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY ELECTROFISHING AT LOCATION 7 NEAR THE DRESDEN STATION, 1974-1981.

		19/4			1975 ^t			1976 ⁰			1977 ^b			1978 ^d			1979			19B0 ¹	· 		1981	A
Species	NO.	CPEh CPEh	Z of Catch	No.	Annual CPE	g of Calch	No.	CPE.	% of Catch	No.	Annua i CPE	% of Catch	No.	AnnuaT CPE	Catch	No.	Annual" CPF.	L of Catch	No.	CPE CPE	1 of Catch	No.	Annua CPE	Catc
LONGNOSE CAR		_	-			-	_	-		-	-	-	-	-	_	7		-	-	-	-	_	-	
SKIPJACK HERRING	~	-	-		-	-	-	-	-	2	2.0	0.8	-	-	-	1	~	^	-	-	-	-		-
ALFWIFE																		~~~			45.5		5.7	
GIZZAKO SHAD	11	9.4	8.9	13	12.0	7.5	ñl	85.1	30.9	120	133.2	51.5	63	42.0	23.3	38	19.0	22.5	66	66.0	45.5	152	R7_1	51.
MODNEYE	-	•	/-	-	-	-	-	-	-	-	-	-		-	-	_	-	-	-	-		-		-
GRASS PICKERLL	-	-	••	-	~	-	-	•-	-		••	-	-	-		-	~ ~ F	·-	-	^	_	-	-	-
NORTHERN PIKE	-		-	~		-	-	-	-	_	-	~	-	_	•	Ţ	0.5	0.6	-	-	-	-	••	•
MUSKEL LUNGE	-		7	•	-	-	•••	-	••	-	~	-	-		-	-	~	-	-	^	-	-	**	•
CYPRINIDAE	-	~	•	-	• •	•	-	-	••	-	••	-		~		-		_	_			-	-	
CLNTRAL STONFROLLER	_				• •		-			•			_	.^.		-	.*	-					-	•
GULDFISH	2	1.7	1.6	3	1.6	1. l	1	1.3	0.5	_2	2.0	8.0		4.1	2-6			~~~	2	2.0	1.4	-	21.4	12
CARP	63	53.8	50.7	96	90.2	56.4	66	87.6	31.9	51	54.2	20.9	87	59.0	32.2	15	7.5	8.9	22	22.0	15.2	36 7	21.4	2
CARP X GOLDFISH	-	-	••	-	•	-	~		-	15	5.0	1.9	13	8.7	4.8	2	1.0	1.2	_	_	-	,	4.0	L
SILVER CHUR	-	-		7	~ -		-	-	-	1	1.0	0,4	_							-	•	_	-	
GOLDEN SHINER	7		~ -	Ŧ	0.9	0.6							1	0.7	0.4	1 46	0.5 23.0	0.6 27.2	15	15.0	10.3	36	20.7	12
EMERALD SILLMER	3	. 2.6	2.4	13	12.0	7.5	26	34-6	12.6	14	14.2	5.5	28	18.7	10.4	410		23.2	13	15.0	10.3		20.1	TZ
RIVER SHINER	**	-	-		-	··	-	-	-	~	•	-	_	^		-	~		_	-	_		-	
GHOS SHINER	••	-	-	-	-	•••	-	~	-	-	**	7		-	-	~	-	-		-	-		-	
STRIPED SHINER	-	~	**	-		-	7	~	*	-		-			-		-	-		-	-	-	-	
COMMUN SHIMER			•	-	~~		_	-	_	-		7	-		~ .	•	-	7		-	7	1	Ð.6	0
SPOITALL SHINFR		-	•		0.9	0.6	_	•	-	-	-	•	1	€.7	0.4	•	-	_		-	_	_	-	1.
RED SHINER	-	•	~	-	••	-	•	~	-	-	-	••	-		-	3	1.5	1.8			-	_	_	
SPOTFIN SHINER	-	^	~	-		-	•	-	7	-	-	~		-	_	2	1.0	1.2	_	_	-	_		
SAND SHINER	~	••	-	•		-	-	-	-	_	•	**	_	^	_	۷	1.0	1.2	-					
STTELCOLOR SHINER	~		-		-	•		•	•	7		3, 1	2	1.3	0.7	5	2.5	3.0	4	4.0	2.7	_		
SLUNTNOSE MINNON	•	••	7		-	•		~	•	п	8.0	3.1	2	1-3	41.7		2.0	3.0	7	7.0		_	.,	
FATHEAD MANKON	-		-	2			-	-	•	_	••	~	_	-	_	ï	0.5	0.6	2	2.0	1.4		-	
BRILLHEAD MINNON	-	•	-	7	1.8	1.1	-	••	-		-	~	_		-		0.0	/s	í	1.0	0.7	_	_	
CREEK CHUB	7	3.4	3.2	2	1.8	1.1	-	4.0	1.4	6	6.0	2.3	7	3.7	3.1		_	-	î	1.0	0.7	1	0.6	C
RIYER CARPSHCKER	3	0.9	0.8	2		1.1		4.0	1.4	1	1.0	0.4		-74.7	7-	2	1.0	1.2	ä	4.0	2.7	_		
QUILLBACK HIGHFIN CARPSTICKER	1	-	0.0	e	1.6	1.1	_	•	_	1	1.0	u_~	_			_			-	/4		_		
NHITE SMCKER	.^ 4	3. 4	3.2	-	~	•		1.3	0.5	-	•	_	1	0.7	0.4			_	-	_	_	-		
SHALLMONTH BUFFALU	2	1.7	1.6	1	0.9	0,6	ı	1.0	0.3		-	-	1	0.7	0.4			-	1	1.0	0.7	1	0.6	•
BIGMOU[1] BUFFALO		L.,	1.0	L	Q. 3	12,12		-			-		_	-		_	_	_		_	_	_		
STILYER REDHORSE	`	_			_	-	•	•	-	2	2.0	0.8	_			_	_	-	_	_	-	1	0.6	Ç
RIVER REDHORSE	-			_	_	_				-	2.0	~	_	_		_	_	~		_	_	76		
BLACK REDHORSE	-	-				_	-	_	-		_	-	_	_		_	_	_		_	-	_		
GOLDEN REDHORSE	-	-	_	-		-		_	-	-	-		_	-		I	0.5	0.6	2	2.0	1.4	5	2.9	J
SHORTHLAD REDHORSE			_	1	0.9	9.6	2	2.7	1.0	15	15.0	5.8	3	2.0	2.6	-	_			-		1	0.6	ı
REDHUASE SPP.		-		1	0.9	0,6	٠.			4-7	10.0		_	_	~		_	-		_	-	.,		
BLACK BULLHEAD	-		-	•	0.5	-	-	-		-	-		_	-	_	1	0.5	0.6		-	-	1	0.5	ŧ
YELLOW BULLHEAD	_	-			-		-	_		-	-	-	_	-		_	-	-		-	~	7		
CHANNEL CAIFISH	А	6.8	6.4	31	2.8	1.7	F.	8.0	2.9	4	4.0	1.6	1	0.7	0.4	-		-	·	-		I	0.6	- (
STONECAL	3	~	V. T	_	• ••)		-	*	-				_				_	-		_	_	-	-	
FLATHEAD CATFISH		-	-	_	~	_			-	-	_		_	_	٠.			-			-	-	-	
TROUT-PERCH	-	-	-	_	-			_		_	-	_	_	_	_	5	2.5	3.0	٠	-	-	-	•	
BROOK SILW ASIDE			_	-	_			-	~		_	-	_	_		_	_	-		_	-	•		
WIII E BASS		0.9	0.8		-		_	-		1	1.0	0.4	1	0.7	0.4		_	-		-	-	-		

TARLE	3.3-45	(CONT.	3
1000	 	10011	. ,

				w					1 - 2.7 4 9	0.00	1-43	(O O												
		1974 ⁶	i		1975 ⁱ)		1976 ⁶	<u>-</u>		1977 ^h	•		1978	,		1979 ⁶	;		1980 ^f			19819	
		Annual	7 01	•-	Annual	To Z		Annua T	% of	ы.	Annual	L of	No.	Annua! CPE	Tof Catch	No.	Annual CPE	E of Catch	No.	Annual CPE	% of Calch	No.	Annual CPE	% of Catch
<u>Species</u>	ilo.	ChEur	Catch	Ko.	CPE	Catch	ИD.	CPE	Catch	No.	CPE	Catch	MUT	UTE	Pacchi	110+	<u>L-F 8-</u>	THE CELL	iid -	<u> </u>	GALLIE			VII 94
YELLOW DASS		•	-	_		-	-	_	_	-	-	_	-	-		-			-	-	-	-		~
RUCK BASS	_	-	-	1	0.9	0.6	-	-	-	-	-	-	1	0.7	0.4	1	0.5	0.6	_	•		2	1.1	0.6
GREEN SUNFISH	11	9.4	8.9	īΞ	12.6	7.5	25	33. 3	12.1	5	5.0	1.9	23	15.3	8.5	19	9.5	11.2	18	18.0	12.4	9	j1.0	6.5
PUMPKINSLED			-	1	0.3	0.€	-	-	•	~	-		-	-	~	-	-		-	-	~	-		
ORANGE SPOTTED SUMFIS	K 2	1.7	1.6	-	-		-	~	_	3	3, 0].2	-	_	~	3	0.5	0.6	-	-	. *_	Ţ	0.6	0.4
BLUEGILL	5	4.3	4.0	3	2.E	1.7	1	1.3	0.5	_	•	-	1	9.7	0.4	1	0.5	0.6	4	4.0	2.7	Ð	4.7	2.8
LONGEAR SURFISH		-		-	_		-	-	-	-		•	~	-		1	0.5	0.6	-	-	~	-	-	-
REDEAR SUNFISH	-	_		-	-	-	-	-	-		-	•		-	_	-	-	·-	-	-	-	-		
SMALLMOUTH BASS	3	5.6	2.4	11	10.1	5.3	-		~	ì	1.0	0.4	30	20.0	11.1	20	10.0	11.8	I	1.0	0.7	4	2.3	1.4
LARGEMOUTH BASS	2	1.7	1.6	4	3.7	2.3	11	14.6	5.3	1	1.2	6.5	-	~	-	1	0.5	0.6	1	1.0	0.7	3	1.7	1.0
SUNFISH HYBRED	1	6.9	0.3	~	-	_	-	-	_	-	-	~	_	•	-	_	•	~	-	· -	-	-	_	-
MHITE CRAPPIE	_	•••	-	-	_	•	-	_		-	~	-	1	0.7	0.4		-	-	-	-	•	2	l.l	0.6
BLACK CRAPPIF			-	_	•••	~	-	_		-	-	-	1.	0.7	0.4	-	-	-	-	-	-	-	-	-
ORANGE HIROAT DARTER	_		~	-	_	_		-	-		_	-	~	-	-	-	-	-	-	-	-	-	-	<i>-</i> -
YELLOW PERCH			~	-	_		•	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
LOGPERCH	_	_	٠-	•	-	_			-		-		-	-	-	•	•		-	~	-	•	~	-
WALLEYE	_	-	-	_			-	-	_		-	_	-	•	-		-	-	-	-				
FRESHWATER DRUM	Ė	0,9	-	1	0.9	0-6	ļ	1.3	0.5	~	~		2	1.3	0.7	1	0.5	0.6	1	1.0	9.7	11	ā.3	3.7
TOTAL NUMBER	124			174			204			242			275			169			145			295		
NUMBER OF SPECIES	16			19			12			17			20			22			16			19		
TOTAL AVERAGE					446.6			675.7			250.0			183.7			84.5			145.0			169.6	
ANNUAL CPE		106*1		•	160.0			275.3			258.8			103.1			07+7			2 70 . 10				

⁽a) Collection periods were in March, June, August, and Movember.
(b) Collection periods were in March, May, August, and November.
(c) Collection periods were in March, May, and August.
(d) Collection periods were in May, August, and Movember.
(e) Collection periods were in May, June, August, and November.
(f) Collection periods were in May, July, and August.
(g) Collection periods were in June, July, August and September.
(h) Represents average catch per hour of electrofishing for year.

TABLE 3.3-46 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY ELECTROFISHING AT LOCATION 9 NEAR THE DRESDEN STATION, 1974-1981.

													_											
		1974	a		1975			19/6 ²			1977	t		1978 ²	.		1979			1980			1981	J
<u>Species</u>	No.	CPE T	% of Calch	Ho.	Annual CPE	% of Catch	No.	Annual CPE	% of Catch	No.	Annual CPE	% of Catch	No.	Annual CPE	% of Catch	ЩO.	Annual CPE	l of Catch	No.	Annual CPE	2 of Catch	No.	ANDREAT CPE	2 of Catch
LUNGMUSE GAR																-	_		-	_	~		-	-
SKIPJACK HERRING ALEWIFE																L	0.5	G. 4	_	_			_	-
GIZZARD SHAD																21	10.5	12.0	4	4.0	6.7	9A	56.1	42.1
MOONEYE																	-	~		-	-	-	_	-
GRASS PICKEREL																-	~		-	-	•	-	-	
NORTHERN PIKE MUSKELLUNGE																_		_	_	-	_	_	-	-
CYPRINIOAL																		-	_	_	_			_
CENTRAL STONEROLLER								•								-	-	-	-	-	-	-	^	-
GOLDFISH																į	0.5	U.6	-	-	r ^			
CARP CARP X GOLIH ISH																23	11.5	13.1	3	3.0	5.0	41 13	23.4 7.4	17.5 5.5
SILVER CHUB																-		_	_	-			, + 1	~
GOLDEN SHINER					•											-	• •		-	-				
EMERALD SHINER																42	21.0	24.0	34	34.0	56.7	28	16.0	12.0
RIVER SHIMER GHOST SHIMER																-		_	_	-	_	_	-	7
STRIPED SHIMER																~		_	_	-		_	-	-
COMMON SHINLR																1	0.5	0.6	-	-		-	-	~
SPOTTATE SHINER RED SHINER																1	0.5	0.5	-	-	.•	•-	_	_
SPUTFIN SHINER						•										_	-	-		_	_	_	~	
SAND SHINER																1	0.5	0.6	_	-	-	-		-
STEFLCOLOR SHANER																-			-	-	~~	-		
BLUNTHOSE MINNEN																12	6.0	6.5	2	2.0	2.3	1	Մ. 6 Օ. 6	0.4 0.4
FATHEAD MINNOW BULLHEAD MINNOW																3	1.5	1.7	_	_	-	•		_
CREEK CHUB																_	_	-	-	~	·	-	-	
RIYER CARPSHCKER					*											-				-	-	1	0.6	0.4
QUILLBACK																2	0.1	1.1	3	3.0	5.0	2	1.1	0.8
HIGHFIN CARPSUCKER HMITE SUCKER																2	1.0	1.1	_	-				_
SMALLMOUTH BUFFALO																-	•	_	-	-	-	3	1.7	1.3
BIGMOUTH DUFFALO																		-	_	-	•-		n -	
STLVER REDHORSE RIVER REDHORSE																_	-	-	-	-		1	0.6	0.4
BLACK REDITORSE																		-	_	-	-			_
GOLDEM REDHORSE																2	1.0	1.1	-	-	••	4	2.3	1.7
SHORTHEAD REDHORSE																6 5	3.0	3.4	-	-		1	0_6	0.4
REDHORSE SPP. ULACK BULLHEAD																5	2.5	2-9	-	-	-	-	-	
YELLOW BULLHEAD																i	0.5	U. 6		_	_	_	-	
CHANNEL CATETSH																_	7	^			-	3	1.7	1.3
STONECAT																-	7		-	-	-	-	-	-
FLATHEAD CATFISH TROUT-PERCH																_	7			-	_	_	-	
BROOK STLYFRSIDE											•					1	0.5	0.6	_	_	-	-		_
WHITE BASS																~		_	-	-	-	••		

TABL	Ε.	•	2 46	tc	ONT	٠ ١
1.75.131		4	5 = 40	1 1.2	1101	_ ,

				· · · · · · · · · · · · · · · · · · ·	:							1			·			1						A
		1974			1975			1976			1977	,		1976°			1979			1980 ⁰			1981	
Species	<u>Ho.</u>	Annual Clies	1 of Catch	No.	Annual CPE	1 of Catch	Na.	Annual CPE	N of Catch	₩c.	Anirita1	2 of Catch	Nto.	Annual CPE	S of Caboli	No.	Annual CPE	I of Catch	No.	Annual CPE	% of Catch	No.	Annual CPE	% of Catch
YELLOW BASS RUCK BASS GREEN SUNFISH PUMPKINSEED ORANGESPOTTED SUM BLUEGILL LONGEAR SUNFISH REDEAR SUNFISH SWALLMOUTH BASS LARGEMOUTH BASS SUMFISH MYBRID WHITE CRAPPIE BLACK ERAPPIE ORANGETHROAT DAND YELLOW PERCH LUGPERCH MALLEYE FRESHMATER DRUM																119 55 23 11	0.5 9.5 2.5 2.5 9.6 9.6 9.6	0.6 10.9 2.9 13.1 0.6	• - -	9.0	15.0	10 13 3 7 4 2 1 1 7 7	5.7 0.6 1.7 2.3 -1.1 0.6	4.3 0.4 1.3 3.0 1.7 0.8 0.4
TOTAL NUMBER NUMBER OF SPECIES TOTAL AVERAGE	5										i					175 22			60 16			232 20		
ANHUAL CPE											•						87.5			145.0			133.4	

⁽a) Location 9 not sampled.
(b) Collection periods were in May, June, August, and November.
(c) Collection periods were in May, July, and August.
(d) Collection periods were in June, July, August and September.
(e) Represents average catch per bour of electrofishing for year.

TABLE 3.3-47 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY ELECTROFISHING AT LOCATION 10 NEAR THE DRESDEN STATION, 1974-1981.

		****	1974 ⁸	— <i></i>		1975)		19/6 ⁰			1977 ^b	·-—		1978 ^d	 I		1979	3		1980 ¹	, :		1004	
			Annugh		. — -	Teven Annual	- 		Annual.			Annual			Annual			Annual			Annual	% of		1981 ⁵ Annual	
Specie	<u>es</u> .	No.	CPE	Catch	No.	CPE	Catch	No.	CPE	Catch	<u>Mo.</u>		Catch	<u>Mo.</u>	CPE	<u>Catch</u>	Ķa.	CPE	Catch	No.	CPE	Catch	No.	CPE	Catch
LUMBNOSE CA	48																	_		_	_	_	-	-	
SKIPJACK H	ERRING	-	-	_	-		-	7	1.3	1.1	4	4.0	2-2					_	-	_	-	-	-	-	_
ALEWIFE		1	0.9	1.5	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	~			-	_
GIZZARD SID	AU	5	4.6	7.6	18	21.6	23.1	34	45.2	37.3	79	96_8	53.2	24	23.2	35.3	б	3.4	7.9	2	2.0	14.3	1.39	79.4	54.9
MOONEYE		~	-	-	-	~	-	-	-	~	•	**	•						-	-	-	-	-	-	-
GRASS PICKI		-		-	-	-	-	-	-	-	-	-	-	-	*						-	-	_	-	-
MORTHERN P		_	-	-	_	-	-	•	-	-	• •			-	_	-		_	-	-	-	-	1	0.6	Ø. ·
MUSKELLUNCA		-	-	_	-	-	-	-	-	-	-	-	-	-	-	-		_	-	-	-	_	_	~	•
CYPRINIDAF		-	-	-	-	_	-	-	-	_	-	_	-	-	-	-	_	_	-	-	-	-	-	-	
CENTRAL SI	UNEROLLER	-	-	-	-	-	-	_	-	~	-	~	~	-	-	-	-	~		•				-	-
GOLDFISH		5	5.6	9.3	2	2.4	12.0	2	2.1	2.2	3	3.8	2.1	2	2.9	2.9	3	1.7	3.9	1	1.0	7.1	3	1.7	3.1
CARP		49	45.4	76.5	30	36.0	46.9	42	55.9	46.2	39	52.8	29.0	20	19.4	29.4	13	7.4	17.1	5	5.0	35.7	19	10.9	7.5
Carp X Call		-	-		· -	-	_	5	5.7	5.5	4	4.2	2.3	J	1.0	1.5	-	-	-	~	-	7	13	7_4	5.1
STEVER CHUI			-	-	-		-	7	-	-	7	-	-	-	-	-	~	⊸ .	-	7	~			_	-
GOLDEN SILL		_	-	-	7	•	-		-	-	-	-	-	-		. 7.	7	. 7.		7	_		•		
EMERALD SII		-	~	~	5	6.0	7.8				13	13.8	7.6	12	11.6	17.5	21	12.0	27.6	5	5.0	35.7	33	18.9	13.
RIVER SHIM		-	~						-		-	-	-	-	~	-	~	-	7	7	•	-	-	•	
CHOST SILLIN		-	~	•				-	***	-	-	-	-	-	-	-	-	-	-	7	-	-	-	7	**
STRIPED SH		-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	••
COMMON SHI		_	~	~	_	~	-	•			-			-	_	-	-	7	-	-	7	~	~	~	••
SPOTTATI SI		-	-	-	-	-		•	٠.			***	-	7	7	-	_	•	7	-	-		•		
RED SHIMER		-	~	-	-	-	-	-	-	•	••	••		••			-	-		-	-	-		-	_
SPOTEIN SH		-	7	-	_	-	•	-	~		•	-	••	-	_	-	Ţ	0.5	1.3	_	-	_	_	-	-
SAND SHINC		-	-	-	-	-	-	•	-	^	-	•	_	7	-	7	3	1.7	3.9	-	-	-	7	-	-
SYEELCOLOR		-		••				••	-	****	_	-		••	••	.•	•	^	^	~	•			_	
BLUNTAKOSE 1		-	-	-	_	-	-	_	-	-	2	2.0	1-1	~	^	7	-	0.6	7 7	-	٦.	-	_	_	_
FATREAD MII BULLINEAU N.			-		-	_	-	_	-	•	.,	^	•	••		~	1	0.0	1.3	7	-	-		_	_
CREEK CHUB	1 MILON	-		-				-	-	-	-	-	-	••	·-			•	_		_	_	-		_
HIVER CARP			_		3	3.6	4.1		_	-	-	-	_	-	_	-	7	-	-				-	_	-
QUILLBACK	SUCKLK		-	_	1	1.2	1.G		_	_	-	1.0	0.5	•	•	-	7	0.6	1.3	1	1.0	7.1	_		
HIGHFIN CA	December 5 B	-		_			f D	_	-	-	,	1-0	u_3	-	-	_		4.0	17.2		1.0	,,,	_	_	_
WHITE SUCK		_	-				•	•	••	••	-			-	_	-	2	1.0	2-2	_	_	_	A	2.3	1.0
SHALL MOUTH		1	6.9	1.5	9	2.4	3.2	-						•	-	-	2	1.0	2.2			,	-		
BIGMOUTH U		-	V.J	1.0	-		-	_	_	_			_	_		-	-	140		_	-	_	-	_	٦.
SILVER RED		_	_	_	_	_	_	_	_	_	_	_	_	-		_	-	-	_	_	_	_	?	1.1	0.4
RIVER REDH		_	_	_	_	_	_	_	_	_	-	_	_	_	_		1	0.6	1.3	-	-	-	-	٠,	-
BLACK REDH		-	-					_						_	_				~	-	~	-		-	-
GOLDEN REDI		-	_	-	_	٠.	_	-	,	-		-		-	-		2	1.1	2.6	_		_	15	8.6	5.4
SHORTMFAD		-	-	-	_	,	-	3	5.0	3.3	1	1.0	0.5			٠,	1	0.6	1.3	-	-	-	6	3.4	2.
REDHURSE SI		_		_	2	2.4	3.2	_			_		_	-	-	_	~			-	-	-	_	-	-
BLACK BULL		_	_	_	-	_	-	_	-	-	-	-	_		~	-		-	-	-	-	-	-	-	-
YELLOW BULL	LHEAD	-	_	-	-	-	-	-	-	-	-	-	-	_			٠.		~	~	-	~	-	/-	~
CHANNEL CA		1	0.9	1.5	1	1.2	1.6					_	_	1	1.0	1.5	-	-	-	-	_	-	-	-	-
STONECAT					-	~			-	_	_	_	-	_				-	-	-	^	-	7	7	-
FLATHEAD C.	ATFISH	-	-	-	-	-	-	-	-					_	-	_				-		~	•	-	-
TROUT-PERCI		-	-	-	-	-	~	~					-				-	••	-	-	-	-	-	-	-
BROOK SILVI		-	-	-	-	-	~	-	~	~	•	•			~	-	-	-	-	-	-	-	-		
WHITE BASS		-	-								_	_		-	-	_	-	-	-	_	_		1	0.6	0.4

TABLE 3.3-47 (CONT.)

***************************************		····									•													
		1974 ⁶	:		19/5 ^t)		19/60			1977 ^h			1978 ⁰	i		1979 ⁶	!		1980 ^f			1981 ⁹	g
Species <u>j</u>	10.	Anaua I CP E	6 of Catch	No.	Annual CPE	% of Catch	No.	CPE CPE	s of Catch	No.	Annual CPE	Z of Catch	No.	Annual CPE	8 of Catch	Mo.	Annual CPE	L of Catch	Ho.	Annual CPE		No.	Annual CPE	E o
YELLOW BASS .	_	_	_		r	~	~		~	~	r.	-	~	~	~	_	_	-	_		~	•	_	
RUCK BASS	-	-	_	_	_	-	-	_	_	-	_	4.	1	1.0	1.5	1	0.6	1.3	-	-	-	~	_	
GREEN SONFISH	1	0.9	1.5	_	_	-	1	1.3	1.1	_	_	_	5	4.8	1.4	9	5.1	8.11	-	-	~	2	1.1	(
PUMPKINSELD	~	-	_	-	_	-	_	-	_	-	-	~	-	_	-	_	-	~	-	~	~	_	_	
ORANGESPOTTED SIMFISH	-	-	-		_	-	_	~	~	~		-	-		_	1	0.5	0.8	~	-	_	-	_	
BLUCGILL	1	0.9	1.5	_	_	-	3	4.0	3. 3	~			-	-	-	_	~	~	п.	~	_	1	0.6	
LONGEAR SUNFISH	-	_	_	-	-	-	-	-	-	P	~	~	~	-	~	~	~	-	_	-	_	-	-	
REDEAR SUNFISH	-	~	-	-	-	~	~	~		-	-	-	_	_	-	-		-	-	-	~	-	~	
SMALLMOUTH BASS	~		~	_	~	*-	- 4	~	-	2	2.5	1.4	1	1.0	1.5	8	4.6	10.5	- 1	1.0	1.6	11	6.3	
LARGEMODIH BASS	~	~	-	-	~	~	•-	~	~	~	~	-	-	_	_	Į	0,6	1.3	-	-	~	1	0.6	
SUNF1SH MYBRID	_	~	~	_	~	-	~	-	~	٨.	~	~		_	-	_		-	-	٠.	AL	~	_	
WHITE CRAPPIE	_			_	-	~	_	-	_	٠.	~	~	_	-	-	-	_	-	-		-	~		
BLACK CRAPPIE	•	_	-	~	~		~	-		-	-	-	_	-	_	-	-	~	~	~	~	~		
DRANGETHROAT DARTER	_		-	-		~	-	~	7-	~	^	•	-	-	_	_	~	~	n.	_		_	_	
YELLOW PERCH	-	_	_	_	_	_	_	_	-		~			-	-	-	-	-	n_	-	~	_	_	
LOGPERCH	_	_	_	-		_	_	-	-	~	~	~	~	~		-	_	-	_	_	-	-	~	
WALLEYE	-	_	_	_	-	_	-	-		~			_		_	-	_	-	-	-		~		
FRESHWATER DRUM	*-		_	-	•-	-		-	-	-		-	-	-	-	-	-	-	-	-	•	2	1.1	
TOTAL NUMBER	55			54			91			147			67			76 15			14			253		
NUMBER OF SPECIES	8			В			3			9			8			15			5			15		
TOTAL AVERAGE ANNUAL CPE		60.7			76 .R			[21.]			181.9			65.9			43.4		-	14.0			144.6	

⁽a) Collection periods were in March, June, August, and November.
(b) Collection periods were in March, May, August, and November.
(c) Collection periods were in May, August, and August.
(d) Collection periods were in May, August, and November.
(e) Collection periods were in May, June, August, and Movember.
(f) Collection periods were in May, July, and August.
(g) Collection periods were in June, July, August and September.
(h) Represents average catch per hour of electrofishing for year.

TABLE 3.3-48 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY SETNING AT LOCATION 1 NEAR THE DRESDEN STATION, 1971-1981.

													·								
Species		710 % of Catch		972a % of Catch	1973a % of No. Catch	. <u>.1</u>	974b 7 01 Cubich	<u>1</u>	9750 % of Catch	. ——	976d 2 of Çatch		97/C % of Catch		978e % of Catch		g7gf 2 of	-	9809 7 61		81h
<u> </u>	<u></u>	*** CC 4	1101	rercii	HOZ (M DC):	HWU -	Catich		COACH	MU.	énerin	No.	Carca	No.	CELLII	No.	Catch	No.	Catch	No.	Cat
NGNOSE CAR						1	4_0	-	-	-	-	-	-	-	-	-	-	-	-	-	
PJACK HERRING						-	-	-		-	•	-	-	-	-	_		-	-	7	
ZARD SHAD						ı	4.0	4	30.8	2	10.5	_	-	-	-	5	17.2	_		4	
SS PICKERCL						-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
THERN PIKE						-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	
TRAL STONEROLLER DFISH								_	-	-	-	-	"	-	-	•	-	_	•	_	
b mr.1911						1 5	7.7	ĩ	, -,	_ 3	15.0	-	-	2	4.9	-		**		_	
x colofish						9	20.0	1	7.7	3	15.8	-	-	1	2.4	1	3.4	10	33.3	4	
NYHEAD CHUU						-	-	-	-	-	-	-	-	-		•	-	-	-	1	
ER CHUS						-	-	_		-	-	-	_	-	-	-	-		-	-	
JEN ZHINER							-	-	-	_	-	_	•	-	_	_	-	_	7	-	
VALO SIIINER							6B.0	Ī	7.7	7	36.8	105	83.3	30	73,2	1.8	62.I	17	56.7	59	:
ER SHTNER						17	ט, מט	1	7.5	,	30.40	102	03.3	30	7.3.2	10	OCTI	17	30.7	30	•
ST SHINCK						_			,	-	_	-	•	_		-	_	_	_	_	
IPFD SHINLR						_	_	ž	15.4		_		_		_	_		_	_	_	
NON SMITHER						_	_	_	20.7	_			_		_			_	_		
MOUTH SHINER						_	_	_		_	_	_	_	_	_	_	_	_		_	
TTAIL SHINER									_	_	_		_	_	_	_	_	_		1	
SHIMER						_		_	_	_	_	_	_	_		_	_	_	_	-	
FIN SHIMER							_	_	_	_	_	1	8.4	,	-	_	_		_	1	
) SHINFR						_	_	_	_	_	_			_	_	_	_	_	_		
IN SHINER							_	_	_	_		_		_		_		_	_		
IC SHINER							_	_	-	_		_	_	_	_	_		1	3.4	_	
EL COLOR SHENER .						_	_	_	_	-	_		_	_	_		_	_	_	_	
KERMOUTH MINNON						_	_	_	_		_	_	_	_	-	_	_	_		_	
RTHUSE MENNOW						_	_	4	30 JR	2	10.5	12	9.5	5	12.2	2	€.9	-	-	_	
HEAD NINKON						_	_	-		_						_	_	_	_	_	
HEAD MINNOW						_	_	_		2	10.5	2	1.5		_	_	_	1	3.3	1	
LR CARPSUCKER						_	_	_	_	_		_		_	_	_	_	-	_	_	
LI.BACK						_	_	_	_	_	_	_		_	_	_	_	_	_	_	
PSUCKER SPP.						_	-	_	_	_	_	_	_	_	_	_	_	-	-	1	
TE SHCKI R						_	_	_	_	_	_	_	-	-1	_	_	-	_	_	_	
LI.MONTH BULLALO						_	_	_	-	-	_	-	-	_	_		-	-		_	
MOUTH BUFFALO						_	-	_	-		_	-	_	_	-		-		-	-	
VER REDHOASF						_	_	_		-	_	-	-	-	_	-	-	-	-	-	
DEN REDMORSE						-	_		-	_	_	_	_	_	_	1	3.4	-	-		
RIHLAD REDHORSE						-	_	_	-	_	_	3	7.3		-	-	_	-	-	-	
HORSL SPP.						_		_	-	_	_	_		-		-	-	-	-		
CK BULLHEAD						-	•	-	-	-	-	-	_	-	-		-	-	-	-	
NNIL CAIFISH						-	-	-	-	_	-	1	0.8	_	-	-	-	-	-	_	
POIF MADIOM						-	-	-	-	-	-		-	-	-	-	-	-	_	-	
UT-PERCII						-	-	-	_	-			-	-	-	-	-	-	-	-	
OK STIVERSIDE						-	•	-	-	-	-	-	-	-	-	-	-	-		-	
TE BASS						-	-	-	-	-	-	•	-	-	-	-	-	-	-	_	
K BASS						-		-	-	-		-	-		-		-	-	-	-	
EN SUMITZH						-	-	-	-	J	5.3		-	-	-	-	-	-	-	-	
NGESPOTYLD SUNFISH						-		-	-			-		_	,	-	-	-	·	-	
FGT&L						i	4.0	-	-	2	10.5	1	6-0	3	1.3	-	_	2	6.7		
22AB HEUOMIL						••	-	-	•	-	-	1	0.8	-	-	-	-	-	-	_	
RGFMUUIH BASS						-	_	-	•	-	_				_	-	-	-	-	2	

TABLE 3,3-48 (CONT.)

<u>Spectes</u>	19718 # of No. Catch	1972a % of No. Catch	1973 ^a % of Mo. <u>Catch</u>	1974b % of Mo. <u>Catch</u>	1975 [©] % of No. <u>Catch</u>)976 ^d % of No. Catch	19770 % of . No. <u>Calch</u>	1978e % of No. Catch	1979f % of No. Catch	19809 Z of No, Catch	1981h S of No. Calch
MICHÉ CRAPPIÉ BLACK CRAPPIE JOHKKY DARTER LOGPERCH SLENWERHLAD DARTUR YELOW PÜRCH				 	 				1 3.4 		1 1.3 1 1.3
FRESHWATER DRUM										• •	
NOTAL MUMBER NUMBER OF SPECIES				25 5	13 6	19 7	126 8	41 5	\ Sa	30 4	. 76 9

(a) Location 1 not sampled.
(b) Collection periods were in March, June, August, and Movember.
(c) Collection periods were in March, May, August, and Royember.
(d) Collection periods were in May, August, and August.
(e) Collection periods were in May, June, August, and November.
(f) Collection periods were in May, June, August, and November.
(g) Collection periods were in May, July, and August.
(h) Collection periods were in June, July, August and September.

TABLE 3.3-49 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY SEINING AT LOCATION 2 NEAR THE DRESDEN STATION, 1971-1981.

	t	97]a	1	972b	1	973°	1	974d	15	019C	15	976°	1	977¢	_1	978b	1:	979 ^p	15	2086	19	Bli
Species	No.	2 of Catch	No,	2 of Catch	No.	l of Calch	No.∙	% of Catch	No.	Catch	No.	% of Catch	<u>No.</u>	% of Catch	No.	% of Catch	No.	% of Catch	No.	% of Catch	No.	2 of Catch
LONGNOSE GAR	2	0.8	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_		_	
SKIPJACK MERRING		_	-		_		_	_	_	_		_	_	_	_	_			_	_		_
GIZZAMO SHAD	q	3.4	ì	0.5	18	13.8	_		2	7.7	2	1.8	4	6.2	20	20.0	1	2.8	_		6	5.9
GRASS PICKERES.			-	-	- 10			_	·		-	1.0				2.0	-	_	_			-
MORTMERN PIKE	•	_	_	_	_	_	_	_		_	_	_		_	4.	2.00	ī	2.8	~	_	1	1.0
	-	-	_	-	-	-	_	-	•	-	_	-	_	-	-	-	1	2.0	_	-	1	1.4
CENTAAL SYONEROLLEN	-		_	_	-	-	_		-	_	_	-	-	-	-	-	_	-	_	•		_
GOLDETSH	Ť	D.3	_		-	•		· -	-	_	-	-	~	-	-	-	_		-	-	_	-
CARP	1	0.3	2	1.0	-	-	-	-	-	-	•	-		-	-		4	11.1	_	-		-
CARP x COLDFISH	-	-	-	-		-	-	-	-	-		-	-	-	1	1.0	-	_	-	_	-	-
HORNYHEAD CHUB	-	-	-	-	· -	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-		-
RIYER CHUA	i	0.3		_	-		-	-		-	-	-	-	-		-	-	-	-	-	-	-
GOLDEN SHINER	_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
EMERALD SHIMER	24	9.2	69	33.2	76	59. 5	16	61.5	7	26.9	13	11.9	59	40.6	19	19.0	Ð	22.2	13	81.2	54	62.1
RTYCR SHINLR	2	0.B	_		-		_	_	-5	19.2	_	_	h.	_	_	_	_	-	_	_	-	_
GHOST SHINER	_	_	_	-	_	_	_	_	_	_	_	-	_	_	_		_	-		_	_	_
STRIPLU SHIMER	_	_	_	-	_	_	_	_	_	-	_		-	_	_	_	_	_	_	_	_	_
COMMUN SHIRER	_	_	_	-	_	_	_	_	_	_		_	_	_	_	_	_	_	_		_	_
BISHOUTH SHIMER	_	_	_		_	_			_	_	_	_	_	_	_	_	_	_			_	_
SPOTTAIL SHINER			-	-	_	_	_			-		-	_	_	1	1.0				_	_	_
RED SHINER	-	-	-	_	_	_	_	_	-	-	-	_	_	_	•	1.0	_	_	_	_	1	1.0
SPOIFIN SHINER	-	-	_	_	-	_	_	•	-	-	_	_	2	1_3	_	-	4	11.1		6.2	3	2.9
	•	-		73 £	-	-	_	-	-	-	-	-	1			-	4	11.1	L	4.2	4	2
SAMO SHINTR	•	-	45	21.6	-	-	-	-	-	-	-	-	1	0,6	•	-	-	-	-	_	_	•
REDFIN SHINER	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	•		-	-	-	-	-
MIMIC SHINER	-	-	-	_	-	-	-	-	-	-	_	-	_	-	-	-	-		-	_	-	_
STEEL.COLOR SHINER	-	-	-	-	-	-		-	-	-	-	-	_	-	-	-	-	-	-	_		1.0
SUCKERMOUTH HINNOW						4.7			-	-	-	~~	-		- ~	-	_		-	6.2	3	
BILUNTNOSE 13 NICOM	/1	2/.1	14	6.7	22	16.9	2	7.7	-	_	3	2.8	12	8,2	19	19.0	_		1	0.7)	2.9
FATHEAD MINMON			ŀ	0.5	-	-			_						3	3.0	-		-	-	-	<i>-</i>
BULLHEAD HIRMON	19	6.9	13	6.3	•	-	4	15.4	9	34.6	88	80.7	36	26.2	20	20.0	7	19.4	-	-	ə	4.5
RIVER CARPSHCKER	2	8.0	-	-	-	•	-	-	-	-	-	-	1	0.6	-	-	-	_	-	-	1	1.0
GUILEBACK	-	-	-	-	-	-	•	-	-	•	_	-	-	-	-	-	-	-	-	-	-	-
CARPSUCKER SPP.	-	•	-	-	-	-	_	-	~	-	-	-	-	-	-	-	-	•	-	-	-	-
WILLIE SUCKER	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	_	
SMALLMOUTH BUFFALO	-	-	-		-	-	-		-	-	-	-	-	-	3	3.0	-	•	-	-	1	1.0
BIGMOUTH RUFFALA		-	-	-	-		-		-	-	-	-	_	-	-		-	-	-	-		-
SILVER REDHORSE	-	_	2	1.0	_	-	.,	-	-	-	-	-	4	2.7	6	6.0	-		-	-	-	-
GOLDEN BEDIADRSC	_	-	_	_	_	_	_	-	_	-	-	-		-	1	1.0	-	-	-	-	_	_
SMORTIILAU REDIIORSE	_		5	2.4	1	0.8	_	-	_	-	-	-	-	-	ŀ	1.0	-	-	-	-		
REDHORSE SPP.	_	_	_		_	_	_	-	_	-	_	-		-	_	-	3	8.3	-	-	_	-
BLACK BULLIEAD	_		-	-	_	_	_		_	_	-	-	_	_	_	-	_	-	-	-	_	-
CHANNEL CATELSH	1	0.3	ں	_	1	0.8	_		_			-	1	0.6	_	-	_	_	-	_	5	4.5
TADPOLE MADYOM	-	_		_	_	_	_		_	_	-	-	_		_	_	_	-	1	6.2	-	
TROUT-PERCIF	-	_	12	5.6	_	_	_	_	_			_	4	2.1	_	_	4	11.1	_	_	-	_
BROOK SILVERSIDE	51	4.2		-	_	-	_	_		_	_	_	j.	0.6	_	_	_	-	_	-	_	_
NHITE BASS		7	_		1	0.8	_	_			_	_	_		_	-	_		-	_	_	
ROCK BASS	3	1.7	4	1.9	î	0.6	_	_	ì	3.8	1	0.9	_	_	_	_	_	_	_	_	_	-
GREEN SUNITSH	96	36.7	14	6./	2	1.5	_	_	i	3.6	1	0.9	_	_	_	_	_	_	_	_		
ORANGESPOTTEN SUNFISH	2	0.8	13	6.3	£ .	1.0	_	_		-7.0		0.5	- 3	4.0	1	1.0	1	2.8	_	_	4	3.9
BLUEGILL	r.	0.0	13	7.1	-	0.8	- 4	15.4	-		.,	_		7.0	į.	1.0			_	_		_
SMALLIMENTH WASS	15	5.8	2	7.1	3	2.3	4	10.4	-	-	-	0.5	1	0.6		1.6		2.R	_	_	1	1.1

TABLE 3.3-49 (CONT.)

		9718 2 of	1	972b	!	973° % of		974d 16 of	3	7. <u>0₹</u> .	1	976 ⁶	1	977¢ % af		978b	_ 1	979 [‡]	1	9809 7 of	198	31h Tof
<u>Spectes</u>	No.	Catch	No.	Catch	Mo.	Catch	H o.	Çatçh	₩o.	Catch	No.	Catch	No.	Catch	No.	Catch	No.	<u>Catch</u>	<u>No.</u>	Catch	No.	Catch
WHITE CRAPPIE	_	_	-	-	_	-	_	-	ż	3.8	_	_	_	_	-	_	1	2.8	_	_	1	1.0
ULACK CRAPPIE	2	0.8	1	0.5	_	-	_		-	_	-	-	-	-		-	-		•	-	_	-
JOHNNY DARTER	-	-	2	3.4	l	9.8	-	#		_	-	-	_	-	-	-	-	_	_	-	-	-
LOGPERCH	1	0.3	4	1.9	2	1.5	**	_	-	-	-	-	-		1	1.0	1	2.8	-	-	1	1.0
SLENDERHEAD DARTER		_	-	-	-	_	_	-	-	-	-		5	3.4	-	-	_	_	-	_	-	_
YELLOW PERCH	-	-	_	-		_	_	_	-	-		-	-	-	-	-		-	_	-	-	-
FRESHWATER ORUM		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	3.9
TOTAL MIMBER	262		20A		130		35		26		109		1 45		100		36		16		102	
NUMBER OF SPECIES	18		18		13		4		7		. 1		14		15		11		4		16	

⁽a) Collection periods were in June, August, and November.
(c) Collection periods were in May, August, and Movember.
(c) Collection periods were in March, May, August, and November.
(d) Collection periods were in March, June, August, and November.
(e) Collection periods were in March, May, and August.
(f) Collection periods were in May, June, August, and November.
(g) Collection periods were in May, July, and August.
(d) Collection periods were in June, July, August, and September.

TABLE 3.3-50 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY SEINING AT LOCATION 5 NEAR THE DRESDEN STATION, 1971-1981.

	1	971 a		972b	1	973°]	19744	1	975°	1	976e	1	977°	1) \Rp	1	979f	<u>I</u>	980 <u>9</u>	19	<u> </u>
Species	No.	% of Catch	Ho.	% o! Catch		% of Catch	Hn_	% of Catch	<u>No.</u>	% of Catch		Z of Catch	No.	t of Catch	No.	i of Catch	No.	S of Catch	No.	% of Catch	No.	% of Catch
LONGNOSE BAR	_	_	_		_	_		_	_	_	_	_			_	_		_	_	_	_	_
SKIPJACK HERRENG	-	_	-	-	_	_	_	_	_	_	_	-	-		_	_	1	1.4	_	_	_	_
GIZZARU SHAD	_		1	0.8	3.4	7_4	12	32.4	1	3.5	3	2.8	3	2.2	_		â	4.2	_		25	24.5
GRASS PICKEREL	-	_	_	_	_		-	_	-	_			_		_		_	_	_	_		
NORTHERN PIKE	-	_	_		_			_	_		_	_	-	_	_	_	_	_	٠.	_		_
CENTRAL STOMFROLLER	_	_	_	_		_	_	-	_	_	_	_	-	_	_	_	_		_	_	_	_
30LDF1SH	1	1.6	_	_		-	_	_	_	_	_	_	_	-	_	_	_	_	_	_		_
CARP		-	2	1.6	1	0.5	_		_	_	_	_			_	_	2	2.8	_	_	3	2.5
CARP x COLDFISH	_		_		-	_	_			_	_	_		_	-	_	_		_	_	_	
HOURNYHEAD CHUB	_	_	_		_	_	_	_	_	_	-	_	_	_	_		_		_		_	_
RIVER CHOB		_	_		_	-	_	_		_	n	_	_	_	_		_		_			_
SOLDEN SHINER	_	_	_	_	_	-	_	_		_		_	**		_	_	l.	1.4	_	_	-	
CHERALD SHIMER	54	90.Z	112	88.9	161	85.2	7	18.9	A	27.6	60	55.6	77	53.3	79	/8.2	13	60.6	36	79.5	61	59.,
RIVER SHINER		_	-	~~~~					ĭ	3.5	-	_	-			-	_	-	-	_	-,	-
MOST SILINER	-	_			_		_	_	_	710	_	_	_	_	_	_	_	_	_	_	_	_
STRIPEU SHINER		_		_	-	_	_	_	_		_	_		0.7	_	_	_	_	-	_	_	
COMMON SHINER	_	_		_	-	_		_	_		_	_	_	_	_		_	_	_	-	_	_
BIGMOUTH SHINER		_	_	_	_	_			_	_	_		_	_		_	-	_	_	_	_	
SPOTTAIL SHIMER		_	_	_	_		_	_	_	_	_		_		_	_	1	1.4	3	5.8	_	_
KLD SHIKER	_	_	_	_	_		_	_	_	_	_		_	_	_	_	_		_	_		,
GPOTFIN SHINER		_	_	_	. 1	0.5	_	_	_	_			15	11.3	_	_	1	1.4	3	6.8		_
AND SHINER	3	4.9	3	6.8	1	0.5	_	_	_	-	_	_	12	9.0	-		_	_	_	~	_	_
EDITIN SILMER	_	T. 2	_		_	0.0		-	_	_	_			-		_	_	_	_	_	-	_
RMIC SUINER	_	_	_	_		-	_	_		_	_	_	_		_	_	_	_	_	_	_	_
TFF: COLOR SHIMER	_	-	_	_	_	_	_	_	_	_	2	1.9	_		_	_	_	_	_	_	_	_
MCKFRMOUTH HINNON	_	_	_	_	_	_	_	-	_	_	-		_	_	_		_	_	_	_	_	_
I IINTRUSE MINNON		_	3	2.4	7	3.7	3	18.9	1	3.5	. 2	4./	1	0.7	14	13.9	1	1.4	3	6.8		_
ATINE OU MINNOW	_	_	_			-			i	3.5	ī	U. 9	_	_			_	_	_	-	_	_
BULLIFEAD MINNON	2	3.3	1	9.0	1	0.5	5	13.5	Ĩ1	37.9	36	33.0	3	2-2		_	1	1.4	_	_	_	_
LIVER CARPSUCKER	_		_	~~~	_	-	_				_		17	12.8	1.	1.0	_	-	_	_	2	2.
DILLBACK	_	_	_	_	_	_			_	_	_	_			_		_	_	_	_	_	
ARPSHCKER SPP.	_		_		_			_	_	_	_			-	_	_		_	_	_	_	-
HITE SUCKER	_	_	_	_	_	_	_	_	_		_	_	3	0.7	3	3,0	-	_	_	_	_	
MALL HOUTH BUFFALO		_	_	_		_	_	_	2	6.9		_	_	_	_	-	_	_	_		-	
RIGMOUTH BUFFALO	_	_	_	_		_	_		_	-	_	_	_	_	_	-		_	_	_	-	-
SILVER REDHORSE	_	_	í	6.9	_	_	_	_	_	••	_	_	-	_	2	2.0	-		_	_	-	_
COLDEN REDHOUSE	_	_	-	-	_	_	_	_		_	_	_	_	_	-		1	1.4	_	-	-	_
HORTHEAD REDHORSE	_	_		_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	-	-	_
ALDITORSE SPP.	_	_	_		_	_	_	_	_		_	_	_	_	_	_	Э	4.2		-	_	_
BI ACK DULLHEAD	_	_	_	_	_	_	_	_		_	_	_	_		_	_	_	-	_		_	_
MAMNEL CATFISH	_	_	3	2.4	_	_	đ	10.8	_		_	_	1	0.7	_	-	_	_	_	-	_	_
CADPOLE MAULOM			~	6.7	_	_	•		_	_		_			_	υ . -	_	_	_	_	_	_
FROIT-PERCH	_	_	_		_	_	_	_	_	_	_	_	_	_	_	**	10	4.1	_	_	_	-
ROOM SILVERSIDE		_	_	_	ī	0.5	_	_	_	.,	_	_	_		_	_		-	_	_	_	_
WHITE BASS	_		_	_	_		_	_	-	_	-	_	_	_	_	_	_	-	-	_	_	_
ROCK BASS	-	_	-	_	_	-	-	_		_	_	-	_	_	_	_	_	-	_	_	_	_
RELW SUMFISH	_	-	_	_	_	_	-	_	_	_	_	_	_	-	_	_	-			***	-	-
URANGESPOTTED SURFISH	_		_	_	_	_		_	_	_	_	-	-	_	_	_	_	_	_	_	2	2.4
HUEGIII	_	_	_	_	1	0.5		_	1	3.5	_	_	1	0,7		_	_	_	_		1	1.0
SMALLMOUTH BASS	_	_	1	8.0	i	0.5	2	5.4	-	-	-	_	_		_	_	_	_	_	_	-	
LARGEMOUTH BASS	_	_	_				-			_			_	_	_	_	1	1.4	_	_	_	

TABLE 3.3-50 (CONT.)

					•									—								
Species	No-	1971d % of Catch	No.	972b % of Catch]. <u>No.</u>	g73¢ % of <u>Catch</u>	. 1 <u>No.</u>	974d % of Catch .	<u>i</u>	975c 7 of Ealch	15	7750 % of Catch	<u>]</u> <u>Mo.</u>	9770 % of <u>Catch</u>	<u> </u>	978h S of Catch	1 No.	g79f % of Catch	1 <u>Na .</u>	9809 Tof Catch	198	<u>31</u> b ≭of <u>Catch</u>
NHITE CRAPPIE	_	_	_	_	_	-	-		ì	3.5	_	-	_	-	_	_	2	2.8	-	_	3	2-9
BLACK CRAPPIE	_		_	-	_	-	-	_	-	-	-	-				_	-	-	_	-	1	1.0
JOHRNY DARTER	_	_	-	_	-	-	-	-4	-	-		-	_	-	-	-	-	-	-	-	_	-
LOGPERCH	_		1	0.8		-	_	_	1	3.5	-	-	-	_	2	2.0	-	-		-	1	1.0
SLENDERHFAD DARTER	-	_	-	-	_	-	_	_	_	_	-	-	-	_	-	-	~	-	_		-	-
YELLOW PERCH	-	-	_	-	_	-	-	-	_	-	-	-	-	-	-	-	-		_	-]	1.0
ARESHWATER DRUM	-	-	-	-	-	-	-	-	•	-	-		-	-	**	-	-	-	-	-	3	2.9
TOTAL NUMBER NUMBER OF SPECIES	60 4		126 10		189 10		37 6		2 6 10		106 6		132 11		រស ច		71 13		44 4		102 10	

⁽a) Collection periods were in June, August, and November.
(b) Collection periods were in Nay, August, and November.
(c) Collection periods were in March, May, August, and November.
(d) Collection periods were in March, June, August, and November.
(e) Collection periods were in March, Hay, and August.
(f) Collection periods were in May, June, August, and November.
(g) Collection periods were in May, July, and August.
(h) Collection periods were in June, July, August, and September.

TABLE 3.3-51 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY SEINING AT LOCATION 7 NEAR THE DRESDEN STATION, 1971-1981.

	1	— 971a % of		972b 7 of		973¢	1	974d	_ 1	9/50		9/6 ²	1	977c Kof	i	978b X of	<u>t</u>	979f	19	209		BI# -
Species	Na.	<u>Catch</u>	<u>Mo.</u>	Calch	Йo.	t of Cabon	<u>No.</u>	K of Cutch	No.	% of Catch		% of Catch	<u>No.</u>	Catch	No.	Catch	Ma.	% of Catch	No.	% of Catch	No.	≈ of Catch
LONGNOSE DAR	_	-		-	_	_	-	-	-	_	_	_	-	_	_		_	-	_	_	-	_
SKIPJACK HERRING	-	-	-	1.	-	-	1	0.4	-	_	-	-	i	0.1	-	-	-	-	-	-		-
GEZZARD SHAD	12	2.7	6	9.8	24	7.2	35	13.3	2	2.8	10	5.0	28	8.4	10	6.8	4	5. L	ø	66.7	163	78.0
GRASS PICKEREL	-	-	-	-		_	-	-	-	-	-	-	-	-	-	-		77	-	-	_	-
NORTHERN PIKE	-		-	-	-	-	-	-	-	-	-	-	-	~	-	41	-	-	-	-	-	-
CENTRAL STUNEROLLER	_1	0.2	-		-	-	-	-	-		_	-	-		-	-	-	-	-	-	-	-
GOLDELSII	12	2.7	7	0.9	_		-	_	1	1.4	-	_	1	U.3	-		-	-	-		-	
CARP	5	1.3	10	1.2	Ţ	0.3	_	-	1	1.4	-	-	1	U.3	1	U.7	-	-	5	16.7	4	1.9
LARP x SOLDFISH	-	-	-	_	-	-	-	-	-	-	-	-	-		-	-		_	-	-	-	-
HORMYHEAD CITUB	-	r	-	-	_	-	-	-	•	-	-	-	1	0.3	-	•	-		-	-	-	-
RIVER CHUB	-	-	-	-	-			-	-	_	-	-		~ ~	-		-	-	-	•	-	-
COLDEN SHENER					1 2	0.3	145	47.0	~	-	-	40.41	103	0.3	1	0.7	 	c	-	-		
EMERALO SININER	308	69.2	569	BO.4	217	55.0	195	/3.9	J2 3	45.1	84	42.0	157	47.4	101	68.2	51	64.6	_		13	6.2
RIVER SHINFR	ő	1.3	_	-	-	0.9	i	0.4	.3	4. Ż	-	-		7	-	••	_	_	-	-	_	-
CHOST SILMER STRIPEÙ SHIMER	-		-	-	3 6	1.8	2 6	0.9 2.3	1	1.4	ī	0.5	٧	_	_	_		_	-	-	_	
COMMON SHIMER	9	2.0	_	-	4	1-2	0	E-3	1	1.4	1	0.5	_	_	6	4.1	-	_	_	_	_	Ξ
BIGMUUIH SHINER	7	2.0	_	-	1	0.3	_	_	_	3.4	_	_	1	O. 3	-	7.1		_	_	_	_	_
SPOTTAIL SILMEN	-	_	18	2.8	1	-	_	-	_	•	_	_	ī	0.3	2	1.4	-	_		_	_	_
RED SHINER	18	4.1	10	0.1	ī	0.3	ī	D.4	_	-	27	i3.5	_		_	-	_	_	_	_	_	_
SPOTFIN SHLNER	10	4,1	ž	0.2	3	0.9	14	5.3		_	- ' '	13.5	ត	1.8	T	0.7	_	_	_	_	_	_
SAND SHINER			24	2.9	10	3.0	14	5.3	_				Ä	2.4	-		3	1.3	_	_	3	0.5
REDFIN SHINER				2.3	70	.,		_	_	_	-	_	ĭ	0.3	_	_	_	-	_	_	_	
MIMIC SHIMIK		-	_			_	-	-	-	_	-	_	_	0.0	_	-	_	_	_	_	_	-
STEELCOLOR SHINER		_	_	_	_	_	_	••	1	1.4	2	1.0	_	_	_	_	_	_	_	_		_
BLEWINGSE MINNOW	56	12.6	37	4.4	31	9.3	1	0,4	Ġ	8.5	4	2-0	101	30.5	12	8.1	3	3.8	-	_	-	-
FATHEAD MINNON	-		-		-			-	3	4.2	_		_		_	-	_	-	_	-	-	-
SULLHEAD MENNOW	3	0.7	4	0.5	19	5.7	б	2.3	12	15.5	6/	33_0	2	0.5	fi	4.1	10	12,7	_	_	1	D-5
RIVER CARPSUCKER	_		2	0.2	-	••	_	-	1	1.4	-	-	(A)	3.0	1	0.7	-	-	-	•	-	-
OUTEL BACK	_		_	_	_		_	-	_	_	_	_		-	-	_	4	5.1	1	8.3	-	-
CARPSUCKER SPP.	-	_	-	_	-	_	-	-	-	_	_	-	-	-	_	-	1	1.3	-	-	-	-
MHITE SUCKER	_	-	_	_]	0.3	_		_	-	-	-	-	_	2	1.4	-	-	-	-		-
SMALLMOUTH BUFFALO	-	_	-		_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BIGMOUTH BUFFALO	-	-	-		-	-	-	-	-	-	-	-	-		_	•••	_	-	_	-		-
SILVER RUDHORSE	-		1	Ð. I	-	-		_		-	-	-	1	0.3	-	-	_	-	-	_	-	-
GOLDEN REDIRORSE	3	0.2	-	-	-		-	-	-	-	-	-	3	0.9	-	-	-	-	-	-	-	-
SHORTHEAD REDHORSE	-	-	5	0.6	-	-	-		-	-	-	2	1	0.3	-	-			-	_		-
REDHORS€ \$PP.	-	-	-	-	-		•-	-	-	-	-	-	-	-	_		4	5.1	-	-	~	-
BLACK (KULLHEAD		-	-	-	-		-	-	-	-	-	-	_	. -	Ł	0.7	-	-	-	-	-	-
CHANNEL CATFISH	5	1.1	.1	-	-	-	-		-	-	-	-	Z	u.6	-	-	-	-	-	-	-	-
TADPOIL MADTON	-	-	-		-	-	-	-	-	-	-	-	-	-	-	_	-		-	-		-
TROUT -PERCH	-	-	Э	U.4	-		-	-	-	-	4	2.0	-		-	-	-	^	-	-	-	_
BROOK SILVERSIDE	-	-	-	-	S	0.6	-	•	-	•	-		1	0.3	-	-	-	-	-	-	_	_
NHITL BASS		-		\	-	-	-	-	-		-	_	-	0.3	.,	-	-	1.3	_		_	_
ROCK HASS	2	0.5	3 21	0.4	- 5	1.5	-		- 1	1.4	-	0.5	1	0.5		-	1	1.3	_		7	f.4
GREEN SUNLISH ORANGESPOTTED SUNFISH	7	0.7	2i 5	2.5	-	17	-	-	T	1.4		u.a	-	_	-	_	_	_	_	_	4	1.9
SCAECIFI SCHOOL STALL SIL	a	0.7	1U.	9.6 1,2	3	0.9	_	-	4	5.5	-	_	ī	0.3	3	2.0	_	_	3	8.3	3	[d
. SMALL MOUTH BASS	-	-	TG.	1,6	1	0.3	ī	0.4	7	1.4	1	0.5	•		1	0.7			_		2	1.0
LARGEMOUTH BASS			1	0.1	i	0.3	ı.	Ü.4	•	1.4	-	737	_	_		. ~-	_	_	_	-	ī	0.5
CONTENDARY DIGO	_	-		U. I	F	V. 3	1	U. 4	_	-	_	•	_	_	_						_	

TABLE 3.3-51 (CONT.)

								-	··· :			.				· ·					—–	· ·
	i	9/10 % of	1	972h % of		9730 % of		9744 % of	.—∓	9/50 1 of	19	97 <u>6</u> e 16 of	1	9// ^C % of	- j	978b \$ 01		979f % of	1	yeou Kof		}1k Lof
<u>Species</u>	Nu.	Catch	No.	<u>Catch</u>	Mo.	Catch	No.	Catch	go.	<u>Catch</u>	No.	Catch	No.	<u>Catch</u>	No.	Catch	No.	<u>Catch</u>	No.	<u>Catch</u>	<u> 10 -</u>	Catch
NHITE CRAPPIE	-	_	2	0.2	_	_		-	2	2.R	-	-	1	0.3	-	-	_		_	_	_	_
BLACK CRAPPIE		-	_	-	-		-	-	-	-	~	-	_	-	-	_	_	-	-	-		-
JOHNNY DARTER	-	-	_	-	-	_	_	-	-	-	-	-	_	-	-		_	-	-4	_	_	-
LOGPERCH	-	•	Ł	0.1	-	-	-	_	-	_	-	_	_	-	_	-	_	_	-	_	-	-
SLENDERULÄD DARTER	_	_	-	_	_	-	F4		_	_	-	_	-	_	_	-	_	-		-	_	-
YELLOW PERCH		_		_	_	-	-	_	_	_	-	-	-		_	-	_		_	-	_	-
FRESIMATER DRUK	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	_	-	14	6.7
TOTAL NUMBER NUMBER OF SPECIES	445 15		832 21		334 19		264 12		71 16		201 10		331 23		148 14		/9 7		12 4		209 11	
Harrist an OI EVEE	10				13		-		10						17		•		•		**	

⁽a) Collection periods were in June, August, and Movember.
(b) Collection periods were in May, August, and Movember.
(c) Collection periods were in March, May, August, and Movember.
(d) Collection periods were in March, June, August, and Movember.
(e) Collection periods were in March, Hay, and August, and Movember.
(f) Collection periods were in May, June, August, and Movember.
(g) Collection periods were in May, July, and August.
(h) Collection periods were in June, July, August and September.

TABLE 3.3-52 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY SEINING AT LOCATION 9 NEAR THE DRUSDEN STATION, 1971-1981.

					· · · ·					· · · ——				
	19714	1972	a 1973 a	19742	19758	19769	19//8	1978a .	19	796	1	980°	198	
Species	% or No. Cato	12	of Yof tch No. Catel	% of No. Cabch	1 of No. Catch	lo. Catch	% of No. Catch	No. Catch		% of Catch	No.	% of Catch		a of Catch
				. ===		1			1.4.1					=- :-:=
LOMGNOSE GAR									-	-	-	-	-	-
SK) PJACK HERRING GIZZARD SMAD					•				3	16.7	_	_	3	7.3
GMASS PICKEREL									-	10.1	_	_	_	7 4.3
NORTHERN PIXE	•								_		_	-	_	_
CENTRAL STONFROLLER									_		_	_		_
GOLDF (SH									-		_	_	_	_
CARP									-	м	-	-	2	4.9
CARP x GOLDI 15H			•						-		-	-	_	-
HORMYHLAD CHUB					•				-	-	-	-	-	-
RIVER CHUB									ц	-	_	-		-
GOLDLM SHIMER									10	E6 4	711	300.0	ĝ	
EMERALD SHINER RIVER SHINER									10	55 .6	18	100.0	7	22.0
CHOST SHIMER									_	_	_	-	_	-
STRIPED SILINER										_	_	_	_	-
COMMON SMINER											_	-	_	_
BIGMOUTH SHINER									-	-	_	-	-	_
SPOTTAIL SHINER									1	5.6	-	-	-	-
RED SHINLK									-	-		•	-	-
, SPOH IN SHIMER				•					-		•	-	-	-
SAND SHINER									, ,	5.6	-	-	_	-
REDFIN SHIMER MIMIC SHINER	•								-	_		_	-	
STEFLCOLOR SHIMER									_	_	_	_	_	_
SMCKERMOUTH MINNUN									-	_	_	-		_
BI UNTHUSE MEMBUA									_	-	_			-
FATHLAD MINNON									-	-	-	-		-
SULLILAD MINNOW									1	5-6	-	-	-	-
RIVER CARPSHOKER									-	-	-	-	-	-
QUILLBACK									-	-	-	-	-	
CARPSUCKER SPP. WHITE SUCKER									_		_	-	_	~
SHALL MOUTH BUT FALO									_	_	_	_		
BICMOUTH BUFFALO									_	-	_	-	_	-
STLYFR REDIIORSE									-		-	-		-
GALDEN REPHORSE									-	-	-	-	-	-
SHORTHEAD REDMORSE									-	-	•	-	-	-
REDHORSE STP.									_	_	-	-	ī	2.4
BLACK BULL HEAU									1	5.6	_	_	į	2.4
CHANNEL ÇATFISH TADPOLE MADICON										3.0	_	_		
TROUT-PERCH									_	_	_	-	2	4.9
BROOK STEVERSINE									_	-	-	_		_
WHITE BASS									-	-	-		-	-
ROCK RASS									_	-	-	-	-	-
GREEN SUNFISH									-		-	-	1	2.4
ORANGESPOTTED SUNFISH									1	5.6	-	-	-	-
BLUEGIII.									_	_	_	-	_	-
SMALEMOUTH RASS LARGEMOUTH RASS									_		_	-		_
condenda or posts									_					

TABLE 3.3-52 (CONT.)

<u>Zbecjaz</u>	No. Catch	1972 ^a % of No. Catch	1973 ^a 2 of No. <u>Catch</u>	19/4 ⁸ % af No. Catch	1975 ⁸ I of No. Catch	19/6 ^è % of No. Catch	1977a % of Mu. Eatch	1978ª K of No. Catch	1979 ^b % n No. Cate		1981d % of No. Catch
WHITE CRAPPLE BLACK CRAPPLE JOHNNY DARTER LIBSPERCH SLENDERHEAD DARTER YELLIN PERCH FRESHWATER DRUM								-	- ·		1 2.4 21 51.2
TOTAL NUMBER NUMBER OF SPECIES									121 6	18 1	41 9

⁽d) Location 9 not sampled.
(d) Collection periods were in May, June, August, and November.
(c) Collection periods were in May, July, and August.
(d) Collection periods were in June, July, August and September.

TABLE 3.3-53 YEARLY CATCH VALUES FOR EACH SPECIES OBTAINED BY GILL NETTING AT #ACH LOCATION NEAR THE DRESDEM STATION, 1980-1981.

			Locat	ion 1					Locat:	ion 2					Locat	ion 5		
		1980	ā		1981	h		1980			1981			198D			1981	
<u>Spactes</u>	No.	CPEC	<u>*</u> _	No.	CPE	· #	No.	CPE	<u> 15</u>	No.	CPE	¥	No.	<u>CPE</u>	<u>z</u> .	No.	CPE	*
LONGNOSE GAR	8	1	5.0	7	<1	6.7	3	<1	4.3	5	<1	13.2	_	~	-	_	_	~
SKIPJACK HERRING		~		-	~	-	1	<1	1.4			_	-		-	2	<1	<1.0
GIZZARD SHAD	24	2	15.1	6	<1	5.7	1] .	1	15.7	8	<1	21.1	5	1	5.5	27	2	33.3
GO! DEYE	_	~	-	1	<1	1.0	10	1	14.3	3	<1	7.9	8	1	8.9	13	1	15.7
GOI,DF1SH	2	<1	1.2	_	~	~	•	-	_	~	~	-	~	-	n.	~	-	_
CARP	101	10	63.5	79	4	57.1	15	2	21.4	8	<1	21.1	56	5	62.2	30	2	33. 3
CARP X GOLDFISH	7	1	4.4	22	1	14.3		_	~	-	_		_	~		_	₩.	~
RIVER CARPSUCKER	1	<1	0.6	1	<1	1.0		~	-	_	-	-	1	<1	1.1	2	<1	<1.0
OUILLBACK	3	<1	1.9	•	_	_	-	•••	~	_	_	•	1	1	12.2	1	<1	<1.0
SMALLMOUTH BUFFALC	-	_	_	3	<1,	2.9	1	<1	1.4	_	-	_	1	<1	1.1	2	<1	<1.0
SILVER REDHORSE	_	~	-	_	~	<u>.</u> ,	~.	_	_		-		_	~	~	2	<1	<1.0
COLDEN REDHORSE		_	~	_		~	4	<1	5.1	_	~	-	~	_	~	-	-	-
SHORTHEAD REDHORSE		~	-	5	<1	4.8	3	<1	4.3	Ė	<1	7.9	3	<1	3.3	11	ì	16.7
WHITE SUCKER	~	-		1	<1	1.0	-	_	^	-	_	-	~		-	m.	~	-
BLACK BULLHEAD	2	<1	1.2	1	<1	1.0	۳.	_	_	~	~	_	_	~	_	-	_	~
YELLOW BULLHEAD	•	-	_	n_	· 🛶	-	-	_	~	-	_	~	~	~	-	-	~	-
CHANNEL CATEISH	4	<1	2.5	1	<1	1.0	8	1	11.4	1	<1	2.6	ŀ	<1	1.1	4	<1	<1.0
WHITE BASS		-	***	_	-	_	1	(1	1.4	4	<1	10.5	1	<1	I. I		-	-
YELLOW BASS	_	~	-	2	<1	1.9	3	<1	4.3	-	-	_	-	-	~	4	<1	<1.0
ROCK RASS	-	-		~	~	-	1	<1	1.4	1	<1	2.6			-		~	-
GREEN SUNFISM	_	~	~	_	_	~	~	-	_	-	-	-	_	-	~	-	~	~
ORANGESPOTTED SUNFISH	~	-	_	-	~	-	٠,		~	~	-	-	-	~	-	-	~	-
LARGEMOUTH BASS	5	1	3. l	-	-	-	2	<1	2.8	_	_	-	~	-	-	-	~	-
MITTE CRAPPIE	Ţ	<1	0.6	1	<1	1.0	2	<1	2.8	1	<1	2.6	1	< <u>1</u>	1.1	1	<1	<1.0
BLACK CRAPPIE	1	<1	0.6	-	~	-	-	-		٠.	~	_	_	^	~	-	-	_
FRESUNATER DRUM	~	~	-	I	<1	1.0	5	1	1.1	4	<1	10.5	2	<1	2.2	2	<1	<1.0
TOTAL NUMBER	159			131			70			38			90			101		
NUMBER OF SPECIES	11			13			14			10			11			13	•	
AVERAGE CPF		16			7			9			2	•		9			6	

⁽a) Collection periods were in June, July and August.
(b) Collection periods were in June, July, August and September.
(c) CPE based on an estimated 20 hours sampling duration for each sampling date.

TABLE 3.3-53 (CONT.)

			Locat	jon 7					Locat	lon 9					Locat	ion 10	j	
		1980	·	-	1901			1980			- 19 81	.—		1980	·		1981	I
<u>Species</u>	No.	CPE	<u></u>	No.	CPE		No.	CPE	1	No.	CPE	1	No.	CPE	<u>¥</u> .	No.	CPE	<u> </u>
LONGHOSE GAR	2	41	1.8	2	<1	1.2	1	<1	1,5	r.	~		_	-	-	-	_	-
SKIPJACK HERRING	-	~	-	_	-	~	_	-	~	-	_	~	~	_	-	-	-	-4
GIZZARD SHAD	5	i	4.5	7	<1	4.1	13	1	19.4	4	<1	<1.0	1	<1	2.7	-	_	~
GOLDEYE	^	-	_	5	<1	2.9	~	-	_	~	_	-	-	~	-	-	_	-
GOLDFISH	1	\mathbf{q}	0.9	_	-	-	1	<1	1.5	_		~	-	4	_	_	n_	~
CARP	78	8	70.9	110	6	60.0	39	4	58.2	20	2	100.0	29	3	78.4	48	3	100.0
CARP X GOLDFISH	2	`.<1	l_B	5	<1	2.9	2	<1	3.0	_	P-	-		-	٠. ~	1	<1	<1.0
RIYER CARPSUCKER	ī	≺Ī	0.9	9	1	10.0	_	_	-	-	_	~	_	_	_	3	<1	<1.0
OU1LLBACK	4	<1	3.6	2	<1	1.2	2	<1	3.0	ж.	~	-	_	_	-	-	-	*
SMALLMOUTH BUFFALO	1	∢1	0.9	3	<1	1.8	1	∢1	1.5	1	<1	<1.0	-	-	-	1	<1	<1.0
SILVER REDHORSE	_	_	_	3	d	1.8	_	_		-4-	_			_	-	-	-	_
GOLDEN REDHORSE	1	<1	0.9	1	<1.	0.6	-	-	_		~	_	~	_	-	_	-	~
SHORTHEAD REDHORSE	3	<1	2.7	7	<i< td=""><td>41</td><td>_</td><td>~</td><td>~</td><td>-</td><td></td><td>~</td><td>-</td><td>_</td><td>~</td><td>_</td><td>-</td><td>m.</td></i<>	41	_	~	~	-		~	-	_	~	_	-	m .
WHITE SHOKER	_	_	~	-	_	_	=	_		~		_	-	_	-	~	-	-
BLACK BULLHEAD	1	<1	0.9	-	~	-	_	~	~	1	<1	<1.0	3	<1	8.1	-	-	
YELLON BULLHEAD	-	_	_	~	~		-	_	-	_	-	_	-	-	_	~	-	~
CHANNEL CATFISH	2	<1	1.8	5	<1	2.9	2	<1	3.0	1	<1	<1.0	1	<1	2.7	1	<1	<1.0
WHITE BASS	1	<ī	0.9	6	<1	3.5	_	-	-	4	_	P-	_	-	-	_	-	~
YELLON BASS	ī	₹.	0.9	ĩ	<1	0.5	_	-	_	ì	<1	<1.0	_	-	-	_	-	_
ROCK BASS	~			_	_		-	_	_	_	**	~	-	-	~	_	_	~
GREEN SUNFISH	2	<£	1.8	_	•	-	_	~	-	-	-	~	_	~	-	_	-	~
ORANGESPOTTED SUNFISH	ī	≺ĩ	0.9	-		٠,	_	~	_	_	n.	-	_	-	-	-	_	-
LARGEMOUTH BASS	_	-		_	_	_	-	-	_	~	~	_	1	<1	2.7		_	-
WHITE CRAPPIE	2	<1	1.8	1	<1	0.6	_	-	~		_	_		_	-	-	~	_
BLACK CRAPPIE	ī	₹Ī	0.9	î	ď	0.6	1	<1	1.5	_		-	-	~	-	-	_	~
FRESHWATER DRUM	ī	<i< td=""><td>0.9</td><td>2</td><td><1</td><td>1.2</td><td>5</td><td>1</td><td>7.5</td><td>-</td><td>-</td><td>-</td><td>2</td><td><1</td><td>5.4</td><td>-</td><td>-</td><td>-</td></i<>	0.9	2	<1	1.2	5	1	7.5	-	-	-	2	<1	5.4	-	-	-
TOTAL NUMBER	110			170			67			28			3/			54		
NUMBER OF SPECIES	18			16			g			6			6			4		
AVERAGE CPE		11			10			7			2			4			3	

TABLE 3.3-54 COMMON AND SCIENTIFIC NAMES OF FISHES COLLECTED BY ALL GEAR TYPES BELOW DRESDEN ISLAND LOCK AND DAM, 1981

Common Name

LONGNOSE GAR AMERICAN EEL SKIPJACK HERRING GIZZARD SHAD GOLDEYE GRASS PICKEREL NORTHERN PIKE MINNONS · GOLDFISH CARP CARP x GOLDFISH GOLDEN SHINER EMERALD SHINER COMMON SHINER SPOTTAIL SHINER RED SHINER SPOTFIN SHINER BLUNTNOSE MINNOW FATHEAD MINNOW BULLHEAD MINNOW RIVER CARPSUCKER QUILLBACK HIGHFIN CARPSUCKER WHITE SUCKER SMALLMOUTH BUFFALO BIGMOUTH BUFFALO SILVER REDHORSE GOLDEN REDHORSE SHORTHEAD REDHORSE BLACK BULLHEAD YELLOW BULLHEAD CHANNEL CATFISH TROUT-PERCH WHITE BASS YELLOW BASS ROCK BASS GREEN SUNFISH ORANGESPOTTED SUNFISH PUMPKINSEED BLUEGILL SUNFISH HYBRID SMALLMOUTH BASS LARGEMOUTH BASS WHITE CRAPPIE BLACK CRAPPIE YELLOW PERCH

WALLEYE

FRESHWATER DRUM

Scientific Name

Lepisosteus osseus
Anguilla rostrata
Alosa chrysochloris
Dorosoma cepedianum
Hiodon alosoides
Esox americanus vermiculatus
E. lucius
Cyprinidae
Carrasius auratus
Cyprinus carpio

Notimegonus crysoleucas Notropis atherinoides

N. cornutus
N. hudsonius
N. lutrensis
N. spilopterus
Pimephales notatus

P. promelas
P. vigilax
Carpoides carpio
C. cyprinus

C. cyprinus C. velifer

Catostomus commersoni Ictiobus bubalus

I. cyprinellus
Moxostoma anisurum
M. erythrurum
M. macrolenidotum

M. macrolepidotum Ictalurus melas I. natalis

I. punctatus

Percopsis omiscomaycus

Morone chrysops M. mississippiensis Ambloplites rupestris Lepomis cyanellus

L. humilis
L. gibbosus
L. macrochirus
Lepomis sp.
Micropterus dolomieui

M. salmoides
Pomoxis annularis
P. nigromaculatus
Perca flavescens

Stizostedion vitreum vitreum Aplodinotus grunniens

TABLE 3.3-55 SPECIES COMPOSITION, RELATIVE ABUNDANCE AND BIOMASS OF FISH COLLECTED BY ELECTROFISHING BELOW DRESDEN ISLAND LOCK AND DAM, 1981.

SPECIES	NUMBER	TOTAL NUMBER	WEIGHT	PERCNT OF TOTAL WEIGHT
LEPISOSTEUS OSSEUS AD ANGUILLA ROSTRATA ALOSA CHRYSOCHLORIS DOROSOMA CEPEDIANUM AD ESOX AMERICANUS VERMICHLATUS AD ESOX LUCTUS AD CYPRINIDAE AD CYPRINIDAE AD CYPRINUS CARPIO AN NOTEMIGONUS CRYSOLEUCAS AD PIMEPHALES PROMELAS AD NOTROPIS CORNUTUS NOTROPIS HUDSONIUS AD NOTROPIS SPILOPTERUS AD NOTROPIS SPILOPTERUS AD PIMEPHALES VIGILAX AD CARPIGOES CARPIO AD CARPIGOES CARPIO AD CARPIGOES CARPIO AD CARPIGOES CYPRINUS AD ICTIOBUS BUBALUS AD ICTIOBUS CYPRINUS AD ICTIOBUS CYPRINELLUS AD HOXOSTOMA ARISURUM AD MOXOSTOMA ARISURUM AD MOXOSTOMA ARISURUM AD MOXOSTOMA ARISURUM AD ICTALURUS NATALIS AD ICTALURUS NATALIS AD ICTALURUS NATALIS AD ICTALURUS PUNCTATUS AD ICTALURUS PUNCTATUS AD ICTALURUS PUNCTATUS AD ICTALURUS MATALIS AD ICTALURUS PUNCTATUS AD ICTALURUS PUNCTATUS AD HORONE CHRYSOPS AD MORONE CHRYSOPS AD MORONE CHRYSOPS AD MORONE CHRYSOPS AD MICROPTERUS BOLOMIEUI AD MICROPTERUS BOLOMIEUI AD MICROPTERUS BOLOMIEUI AD MICROPTERUS SALMOIDES AD POHOXIS ANNULARIS AD POHOXIS NIGROMACULATUS AD	4	0.2	0.9410 0.6200 0.2830 22.4940	0. 5
ANGUILLA ROSTRATA	1	$\overline{0} \cdot \overline{0}$	0.8200	0.3
ALDSA CHRYSOCHLORIS	4 750	.0.2	0.2830	0.1 10.8
JUNUSUMA CEPEDIANUM AD SCOV ARCOTOANUS DEBATOR ATUS AT	330	0.2 13.3 0.1 0.1	0.1730	0.1
ISON HIERICHNOD VENNILUGHIGD HB	뷬	ŏ. i	ŏ.775ŏ	0.4
CYPRINIDAE AD	ĭ	ŏ.ō		
CARASSIUS AURATUS AD	5	0,2 ₿,6	1.2680 121.2930	٥.6
TYPRINUS CARPID AD	228	B.6	121.2930	58.4
NOTENIGONUS CRYSOLEUCAS AB	2	Ŏ. <u>1</u>		
FIMEPHALES PROMELAS AD	1	0.0	B 00E0	A B
NOTROPIS CORNUIUS	11	0.0 0.7	0.0250	0.0
ANTROPIS HUDSUNIUS AN MATROPIE ENTLANTENUE AN	17	0.0		
ANTICOUNTS SETENTIALIST OF YOU	1540	58.7		
SINCOUVIEG NULVINGINED UN	Vrui Å	0.2		
THE PHACES NOTATOS AD	1	ŏ.ō		
CARP X SOUDFISH HYRRID	วโ	Ŏ.B	7,2150	3.5
CARPIGOES CARPIO AD	14	0.5 0.3	2.3850 2.4820	1.1
CARPIODES CYPRINUS AD	9	0.3	2.4820	1.2
CARPOIDES VELIFER	ĺ	Ö.Ö	0,1540	0.1
CATOSTOMUS CONMERSONI AD	5	0.2	0.7940	0.1 0.4 1.0 0.0 0.2
ICTIOBUS BUBALUS AD	3	Q. 1	1.9900	1.0
CTIUBUS CYPKINELLUS AD	1/7	0.0 0.1	0.0600	0.0
TUXUSTURA ANISUKUN AV	15	0.4	0.4000 1.1690	0.4
TOACOTUMB ENTINGENDS	17	0.3	1.1260	0.5
TETAL HRUS HELAS AD	30	1.1	2.2300	0.4 0.5 1.1
ICTALURUS NATALIS AD	-2	0.1	0.2110	0.1
ICTALURUS PUNCTATUS AD	2	0.1	0.0710	0.0
PERCOPSIS ONISCONAYOUS AD	. 2	0.1	0.0030	9.9
NORONE CHRYSOPS AD	11	Ŏ. 4	2.3740	1.1
AURUNE MISSIPPIENSIS AD	10	0.4	0.3250	0.2 0.3
AMBLUPLIES KUPESIKIS AU	111	0.2 4.2 0.1	0.5750 2.0820	1.0
- EDUNTO GINGELLOS AN	1,7,7	7.2 4.1	6.1010	Λ.δ
CONTO MINITA OD TO THE STRAIGHT OF THE STRAIGH	18	ň. 2	0.1010 0.1460 0.4530	0.1 0.3 4.0
FPONTS MACROCHIBIS AR	21	0.7 0.8 1.3	ŏ₊2530	0.3
MICROPTERUS DOLOMIEUI AD	33	1.3	8.3940	4.0
MICROPTERUS SALMOIDES AD	92	3,5	19.9910	9.6
POHOXIS ANNULARIS AD	1 <u>7</u>	0.6 0.2	1.6580	9.6 0.8 0.3
POMOXIS NIGROMACULATUS AD	ភ្	9.2	0.5430	0.0
_EFOMIS HYBKIU	2	0.1	0.0800 0.0290	0.0
TERUA FLAVESUENS AU PTERNOTENTOU UTTGENW AN	1	0.9	1.2110	ŏ.ŏ
APLANTING COLUMNICA AN	7	0.0 9.2 0.3	1.2940	848
				74 B 107
ALTONIOS OF BUDINGTENS UR	•			

TABLE 3.3-56 SPECIES COMPOSITION, RELATIVE ABUNDANCE AND BIOMASS OF FISH COLLECTED BY SEINING BELOW DRESDEN ISLAND LOCK AND DAM, 1981.

SPECIES	NUMBER	PERCENT OF TOTAL NUMBER	WEIGHT	PERCHT OF TOTAL WEIGHT
ALOSA CHRYSOCHLORIS	2	0.3 5.5 1.7 0.3 0.2	0.0440	1.9
DOROSOMA CEPEDIANUN AD	2 33 10 2 1 25 18 397 2 9 39	5.5	0.0360	1.9 1,5
EYPRINUS CARPID AD	10	1.7	0.2030	8.6
PIMEPHALES PROMELAS AD NOTROPIS CORNUTUS	2	0.3	0.0130	0.6
NOTROPIS CORNUTUS	1	0.2		
NOTROPIS HUDSONIUS AD	25	4.1 3.0	0.0080	0,3
NOTROFIS SPILOFTERUS AD	18	3.0		
NOTROPIS ATHERINOIDES AD	397	65 . 6		
PINEPHALES NOTATUS AN	2	0.3	0.0010	0.0
PIMEPHALES VIGILAX AD NOTROPIS LUTRENSIS AD	_9	1.5		
NOTROPIS LUTRENSIS AD	39	0.3 1.5 6.4 0.2 0.2 0.2 0.3		
CATOSTOMUS COMMERSONI AÐ	1	0.2	0.1450	<u>8.2</u>
ICTALURUS HELAS AD	2	0.3	0.1220	5.2 0.0
ICIALURUS NATALIS AD	1	Q+ <u>2</u>	0.0010	0.0
MORONE CHRYSOPS AD	<u>ī</u>	0. 2	0.0800	3.4
AMBLOPLITES RUPESTRIS AO	.2	0.3	0.0100	0.4
LEPOMIS CYANELLUS AD	17	2.8	0.3330	14.2
LEPONIS HUNILIS AD	10	2.8 1.7 0.8 0.8 0.8	0.0530	2.3
LEPOMIS MACROCHIRUS AD	<u>5</u>	Ò'B	0.0320	1.4 1.5 37.7
MICROPTERUS BOLOMIEUI AD MICROPTERUS SALMDIDES AD	5	0.8	0.0350	_1.5
UTCKOLIFKOR BUTUATOER UD	5	0.8	0.8870	37.7
POMOXIS ANNULARIS AD	127 17 1555 9225	1.5 0.3 0.3	0.2810	12.0
POMOXIS NIGROMACULATUS AD	2	ŏ•ã	0.0580	2.5
PERCA FLAVESCENS AD	2	ប្.ភ្	0.0030	0.1
APLODINOTUS GRUNNIENS AD	ឯ	0.8	0.0050	0.2
TOTAL	605		2.3500	

TABLE 3.3-57 SPECIES COMPOSITION, RELATIVE ABUNDANCE AND BIOMASS OF FISH COLLECTED BY GILL NETTING BELOW DRESDEN ISLAND LOCK AND DAM, 1981.

SPECIES	tusunen.	PERCENT OF	l ti ⁿ This inc	PERCHT OF
3.CP1C9	NUMBER	TOTAL NUMBER	WEIGHT	TOTAL WEIGHT
LEPISOSTEUS OSSUES AD	7	3.2	2.8000	3.1
ALOSA CHRYSOCHLORIS	4	1.8	0.8040	0.9 2.9
BOROSOMA CEPEDIANUM AD HIODON ALOSOIDES	21 19	2.5	2.5610	2. <u>9</u>
CYPRINUS CARPIO AB	140	8.6	5.6650 69.3300	<u>. 4.3</u>
CARP X GOLDFISH HYBRID	140 12	63.3 5.4	5.0750	77.5 5.7
CARPIODES CYPRINUS AD	-1	ŏ. ์ ธ่	0.1800	0.2
CARPOIDES VELIFER	ī	0.5	0.2400	0.2 0.3 0.5 1.1
ICTIORUS BURALUS AD	2	Ģ. ģ	Q.465Q	9. 5
NOXOSTOMA MACRO AD ICTALURUS HELAS AD	. 4	1.8	0.9400	<u>1.1</u>
ICTALURUS NATALIS AD	4	1.8 0.5	0.4700	0.5 0.2
MORONE CHRYSOPS AB		0 + D A B	0.1750 0.5730	0.2
MORONE MISSIPPIENSIS AD	2 2	0.9 0.9	0.1100	0.6 0.1
LEPOHIS MACROCHIRUS AD	ī	0. 5	0.0410	0.0
TOTAL	221		89.4310	

TABLE 3.3-58 TOTAL NUMBER, AVERAGE CATCH-PFR-UNIT-EFFORT (FISH PFR HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 1981.

	r	ocation.	4.1			10		4.4		_					4.5
	-				cation			ocation			ocation			ocation	15
	No.	CPEA	<u> </u>	<u>No.</u>	CPE	<u> </u>	No.	СъЕр	<u> </u>	No.	CPE	<u>*</u> -	No.	CPEC	<u>z</u>
AMERICAN EEL	~	•	-	~	~	-	~	-	~	1	0.6	0.5	_	_	-
LONGNOSE GAR	-		-	1	1.3	0.5	1	0.6	0.2	ī	0.4	0.1	1	0.4	0.1
SKIPJACK HERRING	2	1.4	U.4	2	0.6	0.3	-	n.	~	~	~	~	_		-
GIZZARD SHAD	5 5	32.0	10.0	81	48.3	22.8	76	43.4	17.7	64	35.1	11.2	74	42.1	10.4
GRASS PICKEREL	_	_	_	_	_	-	1	0.6	0.2	1	0.4	0.1	1	0.5	0.1
NORTHERN PIKE	_	-		~-	-	•-	_	_		1	0.6	0.2	. 2	1.1	0.3
CYPRINIDAE	1	0.7	0.2	-	-	~	~	٠.	•			-	_		
GO1.DFISH	_	_	-	3	1.7	0.8	1	0.6	0.2	1	0.6	0.2	_	-	_
CARP	57	34.7	10.9	53	31.9	15.0	18	10.3	4.2	35	19.4	6.0	65	34.6	8.6
EMERALD SHINER	306	177.4	55.6	145	84.3	39.7	255	145.7	59.6	375	208.1	64.7	459	262.0	64.9
SPOTFIN SHINER		~	~		-		_		7	-		~	í	0.6	0.1
SPOTTAIL SHINER	2	1.1	0.3	~	~	~	14	8.0	3. 3	2	1.0	0.3	ī	0.6	0.1
COMMON SHINER	_	_	~		-	-	**	V-12	~. ~.	~	1.0	V. J	ì	0.6	0.1
GOLDEN SRINER	1	0.6	0.2	1	0.6	0.3	-	_	_	_	_		•		V-I
BLINTNOSE MINNOW	_	-	7	i	0.7	0.3	~	-		3	1.7	0.5	2	1.1	0.3
FATHEAD MENNON	-	_		_						1	0.6	0.5			
BULLHEAD MINNOW	_	_	~	_	-	-	ĩ	0.6	0.2	_			-	•	•
CARP x GOLDFISH	15	8.7	2.7	-						_ 2	-		7	~ ~	~~
RIVER CARPSUCKER			0.3	-	2.0	1.4	~	1.7	0.7		1.1	0.3	4	2.3	0.6
DUILLBACK	2	i.i 1.3		. 5 5	3.0	1.4	3			3	1.6	0.5	1	0.6	0.1
HIGHFIN CARPSUCKER	2	_	O. 4		3.0	1.4	-		~	2	1.G	0.3		~ ~	
SMALLMOUTH BUFFALO	•	•	-	-	~		-	~~		-	-	-	1	0.6	u <u>.1</u>
	-	~ -	~ ~	1	0.6	0.3	1	0.6	0.2	_	-	*-	1	0.6	0.1
BIGMOUTH BUFFALO	1	0.7	0.2	_	-	-	7			-	-	~	•••	~	_
SILVER REDHORSE	Z	1.1	0.3	-	-	-	1	0.6	0.2	-	_	-		-	-
SHORTHEAU REDHORSE	-	.~	-	3	1.7	0.8	3	1.7	0.7	1	0.6	0.2	-	~	**
GDLDEN REDHORSE	1	0.6	0.2	1	0.7	0.3	9	5.1	2.1	1	0.6	0.2	3	1.7	U.4
WHITE SUCKER	~	~	-	1	0.6	0.3	2	1.1	0.4	1	0.6	0.2	l	0.6	0.1
CHANNEL CATFISH	1	0.6	0.2	-	-	-	1	0.6	0.2	•	_	***	_	~	
BLACK BULLHEAD	15	9.1	2.9	8	4.6	2.2	1	0.6	0.2	3	1.6	0.5	2	1.1	0.3
YELLOW BULLHEAD	, rs	~	_	_	-	_	_	-	-	1	0.6	0.2	1	0.6	0.1
WHITE BASS	1	0.6	0.2	6	3.6	1.7	4	2.3	0.9		-	•	-	~	~
YELLON BASS	2	I.ì	0.3	2	1.1	0.5	5	2.9	1.2	i	0.6	0.2		_	_
TROUT~PERCH		~	-	-	_		2	1.1	0.4		-	-	-	-	-
ROCK BASS	l	9.7	0.2	1	0.6	0.3	_		-	1	0.6	0.2	1	0.6	0.1
GREEN SUNFISH	25	15.0	4.7	5	2.9	1.4	2	1.1	0.4	40	22.6	7.D	39	21,9	5.4
PUMPKINSEED			-		~		ĩ	0.6	0.2	ĩ	0.6	0.2	1	0.5	0.1
ORANGESPOTTED SUNFISH	9	5.6	1.8	1	0.6	0.3	4	2.3	0.9	i	0.4	0.1	3	1.6	0.4
BLUEGILL	š	3.4	î.ĭ	3	1.9	0.9	Ē	1.7	9.7	~	~	01.1	9	5.1	1.3
SUNFISH HYBRID	ĩ	5.7	0.2		-	-	-			ĩ	0.4	0.1		- D*T	
LARGEMOUTH BASS	19	11.6	3.6	!0	5.9	2.8	9	5.1	2.1	23	13.0	4.0	31	17.1	4.2
SMALLMOUTH BASS	4	2.3	0.7	11	6.3	3.0	9 5		1.2	23 7	4.0				
BLACK CRAPPIE	4 1							2.9		-		1-2	6	3.3	0.8
DENOR CRAFFIE	1	0.6	0.2	2	1.3	0.6	~	~	~	~	-	-	2	1.0	0.2

TABLE 3.3-58 (CONT.)

	Lo	cation	11	Lo	cation	12	Lo	mation	13	1.0	cation	14	Lo	cat <u>ion</u>	15
	No.	<u>CPE</u> a	3.	No.	CPE	<u>¥</u>	No.	CibEp	<u>*</u>	Mo.	CPE	15	No.	CPEC	%
WHITE CRAPPIE	7	4.1	1.3	5	3.0	1.4	4	2.3	0.9	1	0.4	0.1	_	_	-
YELLOW PERCH	-	-	~	-	-	-	-	~	-	-	~		1	0.6	0.1
WALLEYE	-	-	-	~	-	-	1	0.6	0.2	3	1.4	0.4	~	~	-
FRESHWATER DRUM	3	1.9	0.6	3	1.7	0.8	~	-	~	1	0.4	0.1	-	~	
TOTAL NUMBER	543		-	360			428			579			714		
NUMBER OF SPECIES	24			26			27			28			26		
AVERAGE CPE		318.9			212.1			244.6			321.6			403.4	

⁽a) Represents average CPE for seven sampling dates.

TABLE 3.3-59 TOTAL NUMBER AND RELATIVE ABUNDANCE OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION BELON DRESDEN ISLAND LOCK AND DAM, 1981

Species	Loca No.	tion 11	Loca No.	tion 12	Loca No.	tion 13	Loca No.	tion 14	Loca No.	tion 15
GIZZARD SHAD	11	13.1	4	2.1	4	2.4	11	11.6	3	4.4
SKIPJACK HERRING	-	-	_		· -	h	1	1.1	1	1.5
CARP	4	4.8	-	_	5	2.9	-	-	1	1.5
EMERALD SHINER	31	36.9	148	78. 7	122	71.8	68	71.6	28	41.2
SPOTTAIL SHINER	5	6.0	1	0.5	2	1.2	3	3.2	14	20.6
SPOTFIN SHINER	1	1.2	9	4.8	6	3.5	1	1.1	1	1.5
COMMON SHINER	-		~	-	-	-	1	1.1	-	-
RED SHINER	701	. - .	11	5.9	26	15.3	1	1.1	1	1.5
FATHEAD MINNOW	1	1.2	_	_	1	0.6	_	-	_	-
BLUNTNOSE MINNOW	-	-		-	-	-	1	1.1	1	1.5
BULLHEAD MINNOW	1	1.2	5	2.7	-	-	_		3	4.4
WHITE SUCKER	-	-	-		-		1	1.1	-	-
BLACK BULLHEAD	1	1.2	1	0.5	**	-	-		**	-
YELLOW BULLHEAD	1	1.2	-		_	-	-		-	-
WHITE BASS	-	<u> </u>	1	0.5	_	_	-	-		_
ROCK BASS	2	2.4	-		-	-	-		-	-
GREEN SUNFISH	8	9.5	2	1.1	3	1.8	3	3.2	1	1.5
ORANGESPOTTED SUNFISH	4	4.8	1	0.5	1000		_	- .	5	7.4
BLUEGILL	2	2.4		****	-	-	1	1.1	2	2.9
SMALLMOUTH BASS	-		1	0.5	-	-	1	1.1	3	4.4
LARGEMOUTH BASS	2	2.4	_	***	~	-	1	1.1	2	2.9
WHITE CRAPPIE	6	7.1	2	1.1	-	-	1	1.1	-	
BLACK CRAPPIE	-	_	-	-	-	-	-		2	2.9
YELLOW PERCH			2	1.1	-		~	-		-
FRESHWATER DRUM	4	4.8	-	-	1	0.6	-	-	_	-
TOTAL NUMBER	84		188		170		95		68	
NUMBER OF SPECIES	16		13		9		14		15	

TABLE 3.3-60 TOTAL NUMBER, AVERAGE CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 1981.

	Lo	cation	11	Lo	cation	12	Ło	cation	13	Lo	cation	16
	No.	CPE	3	No .	CPE	<u> 1</u>	No.	CPEp	9,	No.	CPE	3
LONGNOSE GAR	-	•	_	7	<1	7.1	± 1	_	-	_	_	_
SKIPJACK HERRING	1	<1	<1.0	3	<1	3.0	-	_	-	_	_	-
GIZZARD SHAD	11	1	33.3	9	<1	9.1	-	_	<u>u – </u>	1	<1	<1.0
GOLDEYE	4	<1	<1.0	15	1	16.7		_	_	_		
CARP	35	2	66.7	54	3	50.0	30	2	100.0	21	1	100.0
CARP x GOLDFISH	7	<1	<i.0< td=""><td>4</td><td><1</td><td>4.0</td><td>-</td><td>_</td><td>_</td><td>1</td><td><1</td><td><1.0</td></i.0<>	4	<1	4.0	-	_	_	1	<1	<1.0
QUILLBACK	u.	-		1	<1	1.0	-	_	_	<u>.</u>	_	_
HIGHFIN CARPSUCKER	_	-	-	1	<1	1.0	_	-	<u> -</u>	-	_	-
SMALLMOUTH BUFFALO		_	_	2	<1	2.0	_	***	**	-	-	-
SHORTHEAD REDHORSE	-	_	_	2	<1	2.0	_	_	_	2	<1	<1.0
BLACK BULLHEAD	3	<1	<1.0	1	<1	1.0	_	_		-	_	_
YELLOW BULLHEAD	_	-		1	<1	1.0	-		•••	-	-	-
WHITE BASS	_	_	-	1	<1	1.0	1	<1	<1.0	***		_
YELLOW BASS	•••	_	_		_	_	2	<1	<1.0	_	_	
BLUEGILL	-	_		1	<1	1.0			-		-	-
TOTAL NUMBER	61			102			33			25		
NUMBER OF SPECIES	5			13			3			3		
AVERAGE CPE		3			6			2			1	

⁽a) Represents average CPE for seven sampling dates.

PHYSICOCHEMICAL MEASUREMENTS RECORDED AT EACH FISH SAMPLING LOCATION BELOW DRESDEN TABLE 3.3-61 ISLAND LOCK AND DAM, JUNE 1981

	***************************************		Locati	lon 11			Locati	on 12			Locati	on 13			Locati	on 14			Locati	ion 15		Loc	ation	16
Date	Deputa (m)	Ţů	1 <u>.o.u</u>	Sat.	Spec. Cond.c	Tà	<u>p,a</u> ,t	' <u>Sat</u> .	Sp∈¢. Cond.	_Tª.	<u>0.0</u> .b	3 <u>Sat</u> .	Spec.	Ta	<u>0.0</u> .	Sat.	Spec. Cond.	Ţå	ا_0.ق	Sat.	Spec. €and.	Υª	0.0.1	5 <u>3</u>
22 June	Surface	23.5	6.2	72	633	23.5	9.2	107	538	23.5	8.3	97	533	23.7	8,8	302	555	23.0	9.0	103	631			
	1.0	23.3	5.7	6 6		23.5	9.2	107		23.5	8.3	97		23.5	8.7	181		23.0	8.9	102				
	2.0	23.0	5.5	ő3		23.5	9.3	103		23.5	8.3	97		23.5	В,7	101					ar			
	2.5	~~								23.5	8.8	97					_							
	3.0	23.0	5.5	63	ngs mag		 ·			"u				23.5	8.7	101	_							
24 June	Surface	24.3	8.1	95		24.5	, đ	- <i>•</i>	**	24.5	9.0	107										25.0	8.8	105
	1.0	24.0	1.9	93		24.0	rk.		-:	24.5	9.1	108										25,0	8.8	105
	2.0	23.5	7.9	92																		25.0	8.8	102
	3.0	23.5	7.9	92				_														25.0	8.7	104
	3.5	23.5	7.9	92	_																			

 ⁽a) lemperature = °C
 (b) Dissolved exygen = #g/l
 (c) Specific conductivity = number/cm
 (d) * - Instrument malfunction

		·· _	Locati	on 11		. .	Locati			****	Locatio	on 13	<u>-</u>
Date	Depth (m)	<u>l</u> 8	$\overline{00}_{P}$	Sat.	Spec Cond. c	T	<u>_DG</u>	X Sat.	Spec. Cond.		00	<u>X</u> <u>Şa</u> t.	Spec. Cond.
6 July	Surface	26.0	6.4	78	660	26.2	7.4	90	669	_	-	_	٠
	0.5	_	_	-	-	-	_	-	-	26.2	7.5	91	662
	1.0	25.8	6.2	75	661	25.9	1.5	91	669	-		_	-
	2.0	-	-	-	-	-	"	-	-	-	-	_	_
8 July	Surface	28.1	5.4	81		2/.9	7.z	91		27.9	7.1	90	
•	1.0	27.9	6.4	<i>0</i> 0		278	7.1	90		27.9	7.1	90	
	2.0	27.7	6.3	79		27 .8	7.1	90		27.8	7.1	90	
	3-0	27.7	6.2	78		27,8	7.1	90		21.8	7.1	90	
	3.5	_	_	_	_	_	_	_	-	-	_		
	4.0	27.6	6.2	78		-	_		_	27.8	7.1	90	
	5.0	21.5	5.8	73		-	=	-	-	_	-	٠	
22 July	Surface	26.0	6. l	74	619	25.6	8.0	98	656	26.0	7.1	87	658
22 3313	1.0	25.9	5.0	73	622	25.7	7.8	95	656	25.8	7.1	87	658
	2.0	_	_	-		25.7	7.8	95	557	_	_		_
	3.0		-	-	-	25.7	1.5	91	657	-	-	-	-
23 July	Serface	24.7	6.9	0.2	639	24.9	8.5	102	623	25.0	в.3	99	622
	1.0	24.8	6.5	\overline{II}	640	24.9	8.4	100	683	25.0	8.1	96	627
	2,0		-	_	-	24.9	8.2	98	626	-	_	-	-
	3.0	-		_	_	24.9	8.1	96	629	_			-

TABLE 3.3-62 (CONT.)

	r	-			· · · pa . · ·		Locati	on 15	- Fix a. #	<u></u>	cation	
<u>Date</u>	(m)	I	<u>DO</u>	<u>5a</u> t.	Spec. Cond.		100_	$\frac{sat}{sat}$.	Spec. Cond.		00_	$\frac{\mathfrak{L}}{Sat}$.
6 July	Surface 0.5 1.0 2.0	26.1 26.0	7.7 7.4	94 90 	676 679	25.6 25.6 25.5	7.3 - 7.3 7.3	88 88 88	672			
8 July	Surface 1.0 2.0 3.0 3.5 4.0 5.0									28.2 28.2 28.2 28.2 28.2	7.6 7.6 7.6 7.6 7.6	96 96 96 96 96 -
· 22 July	Surface 1.0 2.0 3.0	26.1 26.1 26.1	7.7 7.7 7.7	94 94 94 -	688 688 689	25.9 25.9 25.9	7.6 7.3 7.2	93 89 88 -	660 659 661			
23 July	Surface 1.0 2.0 3.0									25.2 25.2 25.2	8.5 8.2 8.2	101 98 98

 ⁽a) Temperature - "C
 (b) Dissolved oxygen - mg/l
 (c) Specific conductivity - sumbos/cm

TABLE 3.3-63 PHYSICOCHEMICAL MEASUREMENTS RECORDED AT EACH FISH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, AUGUST 1981.

				Lecati	on li			Locati	on 12			Locatio	in 13	
	<u>Nate</u>	Depth (m)	T _q	pob	Sat.	Spec. Cond.c	<u> </u>	DO	Sat.	Spec. Cond.	T	bo	Şat.	Spec. Cond.
	3 August	0.5	24.5	6.9	88	405	24.8	1.9	94	395	23.5	7.1	84	303
	4 August	0.5	25.8	7.5	91	455	25.5	7.7	94	410	26.0	7,8	95	511
	6 August	Surface 0.5 1.0 2.0 3.0 4.0	26.0 26.0 - -	6.1 6.1 - -	/4 74 - - -		26.2 26.2 26.2 26.2 26.2	7.5 7.5 7.5 7.5 7.5	91 91 91 91 91		26.5 26.5 26.5 26.5 26.5	7.2 - 7.2 7.2 7.2 7.2	89 89 89 89 89	
φ	18 August	0.5	24.8	6.1	73	681	24.8	7.6	90	685	24.9	6.3	75	50.4
149	19 August	0.5	24.5	7.1	85	683	24.5	7.1	85	683	24.5	7,5	89	683
	20 August	Surface 1.0 2.0 3.0	24.4 24.4 -	÷q. - -	-		24.3 24.3 24.3	7.9 7.9 7.9	93 93 93 93		24.4 24.6 24.6 24.6	8.4 8.3 8.3 8.1	99 99 99	

149

TABLE 3.3-63 (CONT.)

			Locati		<u></u>		Locati				Locati		
Date	Uepth (m)	T	_D0	Sat.	Spec. Cond.		<u>D0</u>	% <u>Sat</u> .	Spec. Cond.	<u>. I</u> .	90	g Sat.	Spec. Cond
3 August	0.5	25.0	7.4	ВВ	325	24.5	7.6	89	4 54				
4 August	0.5	25.8	7.7	94	365	25.0	7.6	93	448				
f August	Surface 0.5 1.0 2.0 3.0 4.0									26.3 - 26.3 - -	7.8	95 - 94 - -	
18 August	0,5	25.0	7.8	93	686	24.9	7.2	86	676				
19 August	0.5	24.4	7.7	91	68B	24.3	7.2	85	687				
20 August	Surface 1.0 2.0 3.0												

⁽a) Temperature - °C
(b) Dissolved oxygen - mg/I
(c) Specific conductivity - umbos/cm
(d) * - Instrument malfunction

TABLE 3.3-64 PHYSICOCHEMICAL MEASUREMENTS RECORDED AT EACH FISH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, SEPTEMBER 1981.

				& J	lan 11				ian 19			Locat	[12	
				Locati	<u> </u>	Spec.		LINCAL	ion 12 %	Spec.		Lucat	ion 13	Spec.
				<u>90 b</u>	Sat.	Cond	<u> </u>	<u>_00</u>	<u>Sat</u> .	Cond.	<u> </u>	<u>00</u>	<u>Sat</u> -	<u>Cond</u>
	8 September	Surface	23.0	6.9	79	5 1 !	23.2	8.1	93	625	23.2	7.3	84	609
	,	1.0	23.0	7.0	89	611	23.2	8.1	93	525	23.3	7.4	85	609
		1.5	-	-	-	-	23.2	8.2	94	525	23.3	7.4	85	609
	9 September	0.5	22.6	7.2	83	-	22.6	8.0	92	-	22.6	7.9	91	-
	10 September	Surface	22.6	6.7	17	_	22.5	8.0	92	_	22.5	7.1	89	_
		1.0	22.6	6.7	17	_	22.5	8.0	92	_	22.5	77	89	
		2.0	22.5	6-6	76	_	22.5	8.0	92	_	22.5	7-7	89	_
		2.5	22-5	8.6	76	_		-		-	22.5	7.7	89 89	-
		3.0		_		_	_	_	_	_	22.5	7.7 7.7	89	_
		3.5	_	_	_	_	_		-	-	22.5	7.7	89	
دي														
1 13	21 September	0.5	21.6	6.7	76	673	21.7	8-2	93	670	21.6	7.0	80	679
	22 September	0.5	20.9	7.4	82	638	20.5	8.9	98	636	20.9	7.7	86	639
	23 September	Surface	19.8	8.3	90	618	19.9	9.1	99	610	19.7	9.0	98	611
		i.O	19.7	8.1	88	6) 6	19.9	9.0	98	610	19.8	8.9	97	611
		1.5	19.7	8.0	87	617	_	-	-	-	-	-	-	_
		2.0		_	_		19.9	8.9	97	610	19.8	8-9	97	611
		3.0	_	-	_	-	-	_	-	-	19.9	8.9	97	611

بنا

TABLE 3.3-64 (CONT.)

- Annual Control Contr		, , , , , , , , , , , , , , , , , , ,								4			
			Locati	ion 14			Locat	ion 15			Locati	on 16	
		<u>T</u>	DO_	% <u>Sat</u> .	Spec. Cond.	T_		3 <u>5al</u> .	Spec. Cond.		<u>D0</u>	% <u>Sat</u> .	Spec. Cond.
8 Se pto mber	Surface 1.0 1.5	23.1 23.2	8-1 8-2 -	93 94 -	625 626 -	23.2 23.2 23.2	8.0 8.0 8.0	92 92 92	613 613 613				
9 September	0.5	22.7	8.1	93	-	22.6	8.0	92	-				
10 September	Surface 1-0 2-0 2-5 3-0 3-5									22.5 22.5 22.5 - -	8.1 8.1 8.1	93 93 93 - -	- - - -
21 September	0.5	22.0	8.2	93	667	21.8	8.1	92	665				
22 September	0.5	21.1	8.8	98	644	20.6	8.9	99	641				
23 September	Surface 1.0 1.5 2.0 3.0									19.8 19.9 20.0	9-1 9-0 - 9-0	99 98 98	611 611 611

⁽a) Temperature = °C (b) Ulssolved oxygem = mg/l (c) Specific conductivity = pmhos/cm

TABLE 3.3-65 SPECIES COMPOSITION, CATCH-PER-UNIT EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 22 JUNE 1981

	Lo	cation	1 11	Lo	cation	n 12	Lo	cation	13	Lo	catio	n 14	Lo	catio	n 15
Species	No.	CPE	%	No.	CPE	%	No.	CPE	, w	No.	CPE	io io	No.	CPE	Z.
Longnose gar	_	**	_	_	_	_		_	_	1	3	1.1	-	_	_
Gizzard shad	1	4	1.0	21	84	25.6	4	16	5.9	5	17	5.3	17	68	22.1
Grass pickerel	_	-	_	_		_	_	_	-	1	3	1.1	_		_
Northern pike	_	-	-	_	_	-	_		-	_	_	**	1	4	1.3
Goldfish	_		_	3	12	3.7	1	4	1.5	_		_	_	_	_
Carp	9	36	1.0	21	84	25.6	8	32	11.8	6	20	6.3	13	52	16.9
Goldfish x Carp	8	32	8.1	_	<u>.</u>	-		_	-	_	_	-	_	_	
Golden shiner	_	_	-	1	4	1.2	-			_	-	**	_	_	_
Emerald shiner	48	192	48.5	13	52	15.9	37	148	54.4	65	217	68.4	34	136	44.2
Spottail shiner		-	~	-	_	-	_		-	1	3	1.1	1	4	1.3
River carpsucker	2	8	2.0	2	8	2.4	2	8	2.9	1	3	1.1	_	_	_
Quil lback	_	_	-	2	8	2.4	_		_	1	3	1.1	_	_	-
White sucker	-	-	_	-	-	_	1	4	1.5	-	-	_	-	-	
Smallmouth buffalo	_	_	_	1	4	1,2	1	4	1.5	_	_	-	_		-
Silver redhorse	2	8	2,0		_	-	-	_	-	-	-	-	_		_
Shorthead redhorse	_		_	_	-	-	2	8	2.9		_	-	-	_	-
Black bullhead	9	36	9.1	7	28	8.5	- 1	4	1.5	2	7	2.1	1	4	1.3
Channel catfish	1	4	1.0	-	_	-	-	-	_	_	-	'-	_	-	-
White bass	1	4	1.0	1	4	1.2	3	12	4.4	-	_	-		-	_
Yellow bass	_	_	· -	1	4	1.2	2	8	2.9	_	-	-	-	-	-
Sunfish hybrid	_	-	•••		_	_	-	_	-	1	3	1.1	-	-	-
Green sunfish	***	-	-	2	8	2.4	1	4	1.5	3	10	3.2	4	16	5.2
Orangespotted sunfish	3	12	3.0	-	-	-	1	4	1.5	1	3	1.1	_	-	-
Bluegill	2	8	2.0	1	4	1.2		_	-	-		-	2	8	2.6
Smallmouth bass	3	12	3.0	3	12	3.7	_	_	_	-	_	-	I	4	1.3
Largemouth bass	2	8	2.9	2	8	2.4	4	16	5.9	2	7	2.1	2	8	2.6
White crappie	5	20	5.1	_	•••		-	_	_	1	3	1.1	-	-	-
Black crappie	1	4	1.0	_		_	_	_	-	_	Lat.	-	-		-
Yellow perch	-		_	_	•	_	877	-	_	-	_	-	1	4	1.3
Walleye	-	_	-	-	-	_	-	-	_	3	10	3.2	_	-	-
Freshwater drum	Ź	8	2.0	1	4	1.2	-	_	-	1	3	1.1	-	_	-
Total Number	99			82			68			95			77		
Number of Species	15			16			14			16			11		
Total CPE		396			328			272			315			308	

150

TABLE 3.3-66SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 6 JULY 1981.

	· ! !!!	LATION	11	 10	CATION	12		ATION :	15	LUC	AIIDH AIIDH	j1 _	NO.	CALLUR CPF	r,
	NU.	ĊĔĔ	χ	₩0.	ı:FE	×	NO.	CPE	ኢ	MU.	CUT	Ž.	RO.	1.61	Xa.
DOROSOMA CEPEDIANUM AD	1	.4	2,50	7	28 18	20.59 11.76	_	-	_	2	 B	50.90	9 13	36 52	14.06 20.31
CYFRINUS CARPID AD NOTENIGONUS CRYSOLEUCAS AD	1	34 4	22,50 2,50 2,50	-	-	111/40	_	_	-,		=	-	-		_
NOTROPIS HUDSONIUS AU NOTROPIS ARMERINOIDES AU	19	7/i	47.50	13	64	17.07		-	•	2	R	50.00	30 1	120	46.0F 1.54
PINEFHALES NOTATUS AB CARP X GOLDETSH HYBRID	-			_	-	_	••	=		<u>.</u>	-	-	<u>ī</u>	4	1,54
CARPIGNES CYPRINUS AD HOXOSTUMA HACROLEPIDUTUM AD	·. <u>i</u>	1	2.50	ī	4	2,94	-	_	Ξ	_		-	1	4	1,5%
ICIALURUS NELAS AD MORDNE CHRYSOPS AD	<u>i</u> 	1 -	2.50	1	1	2.94	-	_	-	Ξ		-	A	16	6+25
LEPOHIS CYANELLUS AD LCFOHIS HUNALIS AB	3	17	7 <u>.</u> 50	. 1	4	2.94	_	_	Ξ		=	-	í	4	1.56 1.56
LEPONIS MACROCHIRUS AN HICROCHENOS DULOMIEUI AD	i i	4	2.50 2.50	-	-			-	-	-	_	•	1	4	1,56
HICEOPTERUS SALHOIDES AD POMOXIS ANNU ARTS AD	1 1	4 4	2,50 2,50	í	18 4	5.80 2.94	_	-	=			_	_	-	
AFLUDINOTUS GRUNNIENS AD	-	•	•	1	4	2.74		-	-		_				
TOWN AND ADDRESS A				7.4			G			å			64		
TOTAL NUMBER NUMBER DE SPECTOS	40 12			34		•	ŏ	n		Ż	16			258	
TOTAL CPE		160			136			'n							

3-154

TABLE 3.3-67 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 22 JULY 1981.

	Ł	OCAT10	N 11	1.00	ATTON	12	LOC	ATION	13	LOC	ATION	14	LOC	ATION	15
		CPE	L	NO.	CPE	L	NO.	CPE	*	NO.	CPE	Z	WO.	CPE	¥
DOROSOMA CEPEDIANUM AD	29	116	11.74	2	8	3.64	12	48	8.28	2	8	1.12	7	28	2.62
ESOX AMERICANUS VERMICULATUS AD	_	_	¬	_	~		1	4	0.69	-	-	-	1	4	0.37
CARASSIUS AURATUS AD	_	_	_	-	~	~		*-	_	1	4	0.56	-	-	•-
CYPRINUS CARPIO AG	13	52	5.26	4	16	7.27	5	20	3.45	3	12	1.68	7	29	2,62
PIMEPHALES PROMELAS AD		-	-	•		-		-	~	1	4	0.55	-	-	_
NOTROPIS HUDSUNIUS AD	i	4	0.40	-		_	13	52	8.97	1	4	0.55	-	-	-
NOTROPIS SPILOPTERUS AD	_	-	-	_	•	_	_	-	-	•	_	_	1	4	0.3/
NOTROPIS ATHERINOIDES AD	182	728	73.68	33	132	60.00	94	376	64.83	149	596	83.24	229	916	85,77
PIMEPHALES VIGILAX AD		_			~	~	1	4	0.69	_	-	-	~	-	~
CARPIODES CARPID AD	_	~	_	1	4	1.82	_		_	_	_	_	-	-	-
CARPIODES CYPRINUS AD	-	_	-	î	4	1.82	_	_	-		-	т.	_		_
CARPOIDES VELIFER		_	_	_				_	_	_	-	-	1	4	0.37
CATOSTONUS COMMERSONI AD	_	_	_	-	~	-	1	4	0.69	_	_	-	~	**	_
MOXOSTOMA ERYTHRURUM	1	4	0_40	_		_	6	24	4.14	1	4	0.56		-	-
MOXOSTOMA HACROLEPIDOTUN AR	_	-			-	_	1	4	0.69	-	-	-	-	•-	-
ICTALURUS MELAS AD	6	24	2.43	1	4	1.82	_	-	_	_	_		-	~	~
MORONE CHRYSOPS AD				ī	4	1.82	ì	4	0.69	-	-	-	Α.	٠.	-
MORONE MISSIPPIENSIS AD	1	4	0,40	Ĩ	4	1.82	1	4	0.69	_	-	==	-	_	_
AMBLOPLITES RUPESTRIS AD	_		-	ī	4	1.82	-	-		1	4	0.56	1	4	0.37
LEPOMIS CYANELLUS AD	7	28	2.83	Ž.	a	3.54	1	4	0.69	9	325	5.03	9	36	3, 37
LEPONIS GIBBOSUS AD		_		_	~		1	4	0.69	-	_	-	1	4	0.37
LEPOMIS HUMILIS AD	2	8	0.81	1	4	1.82	3	12	2.07	~	~	~	1	4	0.3i
LEPOMIS MACROCHIRUS AD	ī	4	0.40		-		_	-	_	_	_		4	16	1.50
MICROPTERUS DOLOMIEUI AD	, i	_	_	2	8	3.64	1	4	0.69	2	B	1.12	2	В	0.75
MICROPTERUS SALMOIDES AD	4	16	1.62	Ž	8	3.64	_		_	9	36	5.03	2	8	0.75
POMOXIS ANNULARIS AD	Ĺ		_	2	8	3.64	2	8	1.38	~	-	***	~	٠-	•
POMOXIS NIGROMACULATUS AD		_	_	_	_	-		₩.		•		-	1	4	0.37
STITOSTEDION VITREUM AD	₩.	~	~			_	1	4	0.69	-,	-	-	~	_	-
APLODINOTUS GRUNNIENS AD	-	-	-	1	4	1.82	-	-	-	-	_		-	-	-
TOTAL NUMBER	247			55			145			179			267		
NUMBER OF SPECIES	ü			15			17			11			14		
TOTAL CPE	**	983			220			580			71.6			1068	

TABLE 3/3-68 SPECIES COMPOSTION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 3 AUGUST 1981.

		CATION	11	LD	CATION	12		CALLON	13		CATION	14	LD	CATIUN	
	NO.	DAG	7.	HO+	LUE	ž.	NO.	CPE	z	NO.	ere.	¥	MO.	CPE	X
FPISNSTEUS OSSEUS AD	-	_		_	_	_	_	_				_	1	3	3,85
DSA CHRYSOCHLORIS		-	-	1	5	4,55		-	-	_	-	-	_	_	_
OROSDHA CEPEDIANUM AD	4	0	10.53	14	70	63.64	ó	24	33.33	1	4	4.00	1	3	3,03
SOX LUCIUS Ab					1.	-	_	-		1	. 4	4.00	-	-	
VERINUS CARPID AD	12	60	31.5#	4	20	1B.18	2 5	H	15.11	12	48	48.00	14	38	53.85
DTROPIS ATHERINGIDES AN	1.3	65	34,21	-			5	29	27.78	2	ŧŧ.	8.00	2	6	7.67
ARPIOUES CARPIO AD		_		Į.	5	4.55	_	-	-	-	-	_	-	-	
ARPINDES CYPRINUS AD	1	5	5-47	1	5	4.55	-	-		-	-	-	-	•	
CITODUS CYPRINELLUS AB	1	3	2:63	_	-	•	_	-		•	-	-		-	-
DXOSTOMA ANISURUM AD	-	•	•	-	-		ī	4	5.56	_	_	-		_	_
OXOSTOKA ERYTHRURUM ORONE CHRYSOPS AD		-	•-		-		1	4	5.54	•	_	_	_	_	_
DKONE NISSIPPIENSIS AD		-	•	1	5	4.55	_		_	-		4,00	_	_	_
EPONIS CYANELLUS AD	2	10	5.26	_	_	_	_			+	4 8	8.00	- -	5	7.89
EPONTS HUNTLIS AD	2	10	161.546			_	-	_	Ξ	~	-	0100	í	ă	3.85
EPONIS HACROCHIRUS AU	_	_	_		-		1		5,56		_	_	_	_	5,00
ICROPTERUS DOLONIEUI AD	_	_	_		_	_	<u>.</u>	-	2120			_		3	3,85
TORMPTERUS SALMOIDES AD	А	20	10.53	_	_		- ī		5,56	4	24	24.00	Ŷ	Ĕ	11,54
OMOXIS AMMULARIS AP		- "	34195	_	_	_	- 1	7	5.56		47	24+00	-		1413
DMOXIS NIGROHACULATUS AD	_	_	•		_				-	_		_	1	3	5.65
FLODINOTOS GAUNNIENS AD	1	5	2.63	_	-						_	_	=	_	
		_													
OTAL NUMBER	38			22			18			25			26 6		
JHBER OF SPECIES	8			6		:	-0			ブ			9		
OTAL CPE		196		_	110		•	72			100			71	

TABLE 3.3-69 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 18 AUGUST 1981.

·							•								
	NC.	CATTIN CPE	11 Z	L.∏ ND ₄	CATTON CPF	17 ,	NO.	CALLUN EFE	13 2	ND.	CATION CPF	14 %	₩0.	CATION CPE	15 ₇
LEPISOSTEUS DESEUS AR ALOSA CHRYSOCHLBRIS DORDSONA CEPEDIAMUM AN CYPTRAUS CARPIO AN NOTROPIS CURNITUS NOTROPIS CURNITUS NOTROPIS CURNITUS NOTROPIS CASPIO AN CARPIODES CAPPIO AN CARPIODES CYPKINUS AN HEROMES CYPKINUS AN HEPOMIS CYPKINUS AN LEPUMIS NUMILIS AR MICROFICHUS DOLMIEUI AN MICROFICHUS DOLMIEUI AN MICROFICHUS DOLMIEUI AN MICROFICHUS DALMITUES AN POMIXIS ANNULARIS AN	31 8 1 4	124	20,00 56,36 14,55 1,82 7,27	300 11 2 - 44 1 1	- 4902 - 644 532 - 644 1644 1644	1.61 20.97 12.97 48.59 1.61 3.23 	49 1 49 1 - - - 1	160 4 196 4 - - - 4	1.08 43.01 1.08 	- :54 - 8621 - 3 : 71 -		4.B1 3.85 02.69 1.92 0.96 2.BB	5 1 1 77 8 	20 4 4 308 - 32 - 40	 4.76 0.98 0.98 75.49 - 7.84 9.80
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPC	រភ ទ	220		62 10	248		93 6	372		104 B	416		102 6	408	

TABLE 3.3-705PECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT FACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 8 SEPTEMBER 1981.

	NÜ.	POTTON CPE	11 2	HO. LO	CATTON CFE	12 X	NO.	CATTUN CPE	1.3 z	₩IJ. L00	MI I OH CPE	14 Z	NO.	CATION CPF	15 ₇
ANGUILLA ROSTRATA		-		-			_		-	1	4	3.33	-		_
ALOSA CHRYSOCHLORÚS DORÐSUHA CEFEDÍANUK AD ESOX LURTUR AD		10	9.0 9 -	Ξ	-	-	-	_	 -	1	1	3,33	5	20	11.63 2.33
CYPRIMIDAE AD CYPRIMUS CARPIO AD	$\frac{1}{3}$	15 15	4,55 13,64	- 7	 35	_ 30.43	=	-		- -	16	13,33	10	40	27.76
NULKOPIS HURSONIUS AD	.Ξ		••	•	-	-	. 1	4	4.00	-	-=	_		_	-
NOTROPIS ATHERINOTOES AN PIMEPHALES NOTATUS AN	5	25	22./5	10 1	50 5	43.48 4.35	17	<u>0</u> ف	60.00 -	4 -	16	13.33	<u>7</u>	25	18.28
CARP X GOLDFISH HYPRID	1	5	4,55	=	_	-		-	-	-	-		-	-	-
CATOSTONUS COMMERSANI NU ICTIOBUS BUBALUS AD	-	_	-	_	_	-		_	_	1	4 -	3.33	1	4	2.33
NOXOSTORA ERYTHRURUM			-	1	5	4+35	-	• •	-	-	-	5. TT	-	-	_
KOKOSTOHA HACROLEPIDOTUM AD TOTALULUS HELAS AD	_		-	_	_	_	-	_	_	i	4	3.33 3.33	_	_	
TCIALUNUS NATALIS AD	-	-		-	_	-	-	-		î	4	3,33	1	4	2.33
TOTALURNS PUNCTATUS AD AMBLUFLITES RUPESTRIS AD	- 1	5	4,55	-	_	_	j	·1	4.00	-	_			-	_
1 FFRMIS CYANGELUS AB	3	15	13.44		-	-	-	-		10	40	33+33	11	14	75.5A
LEROMIS GIBBOSUS AD LEPONIS HUNTLIS AD	3	15	13.64		_	-		-	_	1	4	3-33	_		_
LEFCHIS MACROCHIRDS AD	<u>:-</u>	1	-	L	5	4.35	1	4	4.00	.			2	نا	4.65
HYCPOMIERUS BULBHIEUI AD HTCROPTERUS SMLHOVDES AD	1	- 5	4,55	1	5	4.35	35	13 8	12.00 8.00	ე 2	12 B	10,00 4,67	5	20	11.43
PROGRES ARBULARIS AN	í	. 5	4.55	į	5	4.35	Ξ	=				_	_	-	-
PHHOXIS NIGROHACULATUS AD LEPUHIS HYBRID	1	5	4.55	<u> </u>	5	4 <u>.</u> 35	-	_	-	-	-	-	=	_	_
												•			
TOTAL NUMBER NUMBER OF SPECIES	22 11			23 8			25 6			30 12			45		
TOTAL LIFE	11	110		č	115		n	100		12	120		,	172	

TABLE 3.3-71 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER HOUR), AND PERCENT OF CATCH OF FISH COLLECTED BY ELECTROFISHING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 21 SEPTEMBER 1981.

				·		· · ·		• • • • • • • • • • • • • • • • • • • •							: :
	1.05	MULLAC	11	I D	Callon	12	1.0	CATION	1.5	10	CATTON	14	l fr	MOTIAL	15
	ND.	ĆFE	~~ x	NO+	CPE	7 %	. ผงกั้	CPE		มถ.ี	CPE	Z Z	HU₁	L'SE	X.
LETICUSTEUS OSSEUS AD DORTSCHA CEPEDIANUM AD CYFRINUS CARPIO AD NOTRIPIS ATTERINOTUS AD PEMEPHALES NOTATUS AD LARP X GRU PETRISH HYBRID LARPIGUSES EMPLU AD CATOSTONIUS CONHEKSONI AD MOXUSIONA MACROLEPIDOTUM AD PERCOPSIS ENISCOMAYORS AD LEPONIS CYANELLUS AD LEPONIS CYANELLUS AD LEPONIS CYANELLUS AD HEROPIFRUS AD MICROPIFRUS AD LEPONIS CYANELLUS AD HEROPIFRUS BULUNTEUT AD HICROPIERUS SALMOTOFS AO PUMDXIS ANNOCALI ATUS AD POMOXIS ANNOCALI ATUS AD POMOXIS ANNOCALI ATUS AD POMOXIS ANGROMACUJATUS AD	918 6	36 44 32 24 	21.43 26,19 19.05 14.29 2.38 4.75 4.75	142534	4 96 20 172 - 4 - 8 - 4 8 - 4 8 8	1.22 29.27 6.10 52.44 1.22 2.44 1.22 2.44 1.22	1423	565 212 	17,72 2,53 67,09 2,53 2,53 2,53 2,53 1,27 1,27 1,27	50 44 67 32 	200 168 268 10 0 - - - 52 - 12	35.21 2.82 47.13 2.11 1.41 	30 / 80 1 3 1 1 3 1 7	120 28 320 4 12 4 4 12 	22,22 5,19 59,26 0,74 2,22 0,74 0,74 0,74 0,74 0,74 0,74
TOTAL MUMBER NUMBER OF SPECIES TOTAL LPE	42 Я	նձն		82 10	778		79 10	316		142 7	54 8		135 11	540	

TABLE 3-3-72SPECIES COMPOSITION, CATCH-PER-UNIT EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH
OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND
LOCK AND DAM, 24 JUNE 1981.

<u>Species</u>	No.	Cation CPE	11 2	No.	cation <u>CPE</u>	12 	Lo No.	catio CPE	n 13	Lo No.	cation <u>CPE</u>	16 <u>%</u>
Gizzard shad Carp Goldfish x Carp Shorthead redhorse	2 7 1 -	1 3 <1 -	20.0 70.0 10.0	- 4 - 1	- 2 <1	80.0 20.0	- 1 - -	<1 - -	100.0	1 2 -	<1 1 - -	33.3 66.7 -
Total Number Number of Species Total CPE	10 2	4		5 2	2		<u>1</u> 1	<1		3 2	1	

TABLE 3.3-73SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 7 JULY 1981.

	1.0	CATIUN	11	1.0	MOLTAG	1.2	1.0	CATION 1	13	F-R-C	ATION:	1.6
	NO.	ÜFE	Х	HO.	CPE	Z	NO.	CPE	X	NO.	CPF	" "
LEPISOSTEUS DESEUS AD				_	-							
DOMOSOMA CEFEDIANUM AD	_		_	2	< 1	10.53		٠.	-			
HIODON ALOSOIDES	-	- :			7	-		٠.			٠-	_
CYPRINUS CARPID AD	3	1	60.00	15	Ð	78,95	8	3	100	3	ì	10
CARP X GULDFISH HYBRID	Į	<]	20.00	į	< 1	5.26	_	_	_	_	•	_
CARPIODES CARPID AD	_	-	-		:-	-	_	-		,		
CARPIDDES CYPRINUS AD	***		• •	1	≺i	5,26				_	-	
ICTIOBUS BUBALUS AD	_		-	-		_		-1	-	_	• •	
KOXOSTOMA ANISURUM AD	_	-	• •	-		-	•		-	_	-	
MOXOSTOMA MACROLEFIDOTUM AD	_			_	-		•-	_		_		_
ICIALURUS MELAS AD	<u>1</u>	< 1	20.60					_	••			-
ICTALURUS PUNCTATUS AD	_	:-	-	-	-	_				_		
MORONE CHRYSOPS AU	_	-	-	-	_		••	_	-	_	-	
FOMÚXIS ANNULARIS AD	•	-				٦.	-		-	_	•	-1
TOTAL NUMBER	ភ			19			Ŗ			3		
NUMBER OF SPECIES	2	2		್	7		1	3		1	3	
TUYAL CPE		£.			,			.7			λ.	

TABLE 3-3-74 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 22 JULY 1981.

		1.80 NO.	CATION CPE	11 2	NO.	CATION CCF	12 X	LO(CATION CPE	13 %	NO.	ATTON CPE	16 Z	
	LEPISOSTEUS OSSEUS AD			DO 1	2	1	9.52	_	_				_	
	DDROSOMA CEPENIANUH AD				ì	∢ 1	4.76	_	-	_	-			
	HINDON ALOSDIDES			•	3	1	14,29	-		-	-	-		
	CYPRINUS CARPIO AU	3	1	60.00	11	5	52.30	7	3	77.78	6	3	85.71	
	CARP X GOLDFISH HYDRATO	1	< 1	20,00	1	< }	4.76	-	_	-	1	< 1	14.27	
	CARPTODES CARPIO AD	•••	- .	-		-			•	- ·		-	•	
	CATUSTOMUS CONMERSONI AU		-				_		-	-	-	-	-	
	TCTTOBUS BURALUS AD	_	-		2	I	9.52	_		-	_	_	••	
	NOXOSTOMA FRYTHRURUM	•	-		-	_	-		-	•	-	••	_	
	MOXOSTOKA MACROLEPTBOTUM AD		-		_	-			-	••	_	_		
	TCTALURUS MELAS AD	1	CI.	20.00		-	-	-	-					
	icialbrus natalis ab	_	₹		1	< 1	4.76		-			_		
	ICTALURUS PUNCȚATUS AD	_		-		-	-				-	••	_	
	MORONE CHRYSOPS AR		-		_	-	-	1	< 1	11.11	-	-	•••	
	MURONE MISSIPPIENSIS AD	•		-		_		1	<]	11.11	**			
د	POMOXIS ANNULARIS AD	***	•••	-	_	-	-	••	. –	B444		-	_	
7														
J	TIME AT MILESON TO				*1.4			45			~			
	TUTAL NUMBER	÷,			21			7			<u>,</u>			
	NUMBER OF SPECIES	٤	9		/	o.		٠	4		<u>~</u>	ર		
	TOTAL CPE		2			9						•		

ZQT #

TABLE 3.3-75 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 5 AUGUST 1981.

			.,,,,,							,		
·	NO.	CATION CPE	11 2	NO.	CATION CPE	12 X	NO.	t MOLTAD SPD	13 Z	ИО. Г.ОК	CATION CPE	16 %
DORGSOMA CEPEDIANUM AB HIDDON ALOGOIDES CYPRINUS CARPIO AD CARP X GOLDFISH HYBRID MOXOSIONA HACROLEPIDOTUM AD MORONE CHRYSOPS AD	52 7 3	2 1 3 1	29.41 11.76 41.18 17.65	1 10 1 - 1	0 4 0 - 0	7.69 -5.92 7.69 7.69	- 2 - -	1 - -		- 2 - 1	1 0	- 66,67 33,33
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	17 1	5		13 4	์ วิ		2 1	1		3 2	1	

TABLE 3.3-76 SPECIES COMPOSITION, CAICH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED-BY CILL NETTING AT EACH SAMPLING LOCATION BELOW DRESDEM ISLAND LOCK AND DAM, 20 AUGUST 1981.

	No.	CATION CPE	11 %	NO.	CATION CPE	12 X	LOI NG.	CATION CPE	13 ₂	LO NO.	CATION CPE	16 %
LEPISOSTEUS ÖSSEUS AD DOROSOMA CEPEDIANUM AD HIDDON ALOSOIDES CYPRINUS CARPIO AD CARP X GOLDFISH HYBRID CARPOIDES VELIFER MOROME HISSIFPIENSIS AD	10 10 1	- 1 0 4 0 -	14.29 7.14 71.43 7.14	3 1 4 3 - 1	1 0 1 1 	25.00 8.33 33.33 25.00 8.33	- 2 2	- - 1 - 0	66,67 - 33,33	- - - -	1.4.1.	
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	1 4 4	5		12 5	4		3 2	ī.		Ö ü	0	

TABLE 3.3-77 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL METTING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 10 SEPTEMBER 1981.

					· · · · · · · · · · · · · · · · · · ·				<u> </u>			
	LOCA NO.	TION 11 CPE %	ио. Гро	CPE	12 %	NO.	CATION 1 CPE	13 %	NO.	CATION CPE	16 %	
LEPISOSTEUS OSSEUS AD ALOSA CHRYSOCHLORIS DOROSOMA CEPEDIANUM AD HIODON ALOSOIDES CYPRINUS CARPIO AD	1	0 16.67 0 16.67 0 16.67 1 50.00	22274	11131	10.53 10.53 10.53 36.84 21.05	- - - - 6	5	- - - - 100	 7	- - - 3	- - - 87,50	
CARP X GOLDFISH HYBRID MOXOSTOMA MACROLEPIDOTUM AL LEPOMIS MACROCHIRUS AD	_ ; _		1 i.	0	5.26 5.26	1M	 - -	_ _ _	<u>i</u>	0	12.50	
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	6 4	2	19 7	7		6 1	2		8 2	3		

TABLE 3.3-78 SPECIES COMPOSITION, CATCH-PER-UNIT-EFFORT (FISH PER 8 HOURS), AND PERCENT OF CATCH OF FISH COLLECTED BY GILL NETTING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 23 SEPTEMBER 1981.

	NO.	CATION CPE	11 %	4.04 1.00	CATION CPE	12 %	1.00 NG.	CATION 1	13 %	₩0.	CATION 1	6 %	
ALOSA CHRYSOCHLORIS DOROSOMA CEPEDIANUM AD HIDDON ALOSOIDES CYPKINUS CARPIO AD HOXOSTOMA MACROLEPIDOTUM ICTALURUS MELAS AD	1 - 2 1 An -	- 0 - 1 - 0	25.00 50.60 25.00	12 17 11	0 1 0 3 0	7.49 15.30 7.69 53.85 7.69 7.69	 4 	- - 2 -	- - 100	- - 1 -	- - 0 -	- 100 -	
TOTAL NUMBER NUMBER OF SPECIES TOTAL CPE	4 3	. 1		13 6	5		4 1	2		1 1	0		

TABLE 3.3-79 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION BELOW DRESDEN LOCK AND DAM, 22 JUNE 1981.

		11				10	1			- n
Species	No.	ion 11	No.	ion 12 %	No.	ion 13	No.	ion 14 %	No.	ion 15 %
						-	2			-
Gizzard shad	- 6	18.8	44	68.8	.DE	1.5		11.1	10	4.0
Emerald shiner			44		35	53.8	13	72.2	10	40.0
Spottail shiner	4	12.5				-	_	_	1	28.0
Red shiner	_	_	10	15.6	23	35.4	_	-	1	4.0
Spotfin shiner	_	-	6	9.4	4	6.2	-	-	_	_
Bluntnose minnow	-	-	-	-	_	-	1	5.6	_	-
Fathead minnow	1	3.1		_	1	1.5	-	•	-	
Bullhead minnow	-	_	-	-	-	_	-	-	3	12.0
Black bullhead	_	-	1	1.6	_	_	_	-	_	-
Yellow bullhead	1	3.1	-	-	_	_	_	-	-	_
White bass	ms.	***	1	1.6	_	_	-	_	_	_
Rock bass	2	5.2	_	_	-	_	_	_	_	_
Green sunfish	4	12.5	1	1.6	1.	1.5	<u></u>	-	_	
Orangespotted sunfish	2	6.2			_	_	_	***	_	78
Bluegill	ī	3.1	_				1	5,6	_	***
Smallmouth bass	~	~	_	_	_	_	_	-	1	4.0
Largemouth bass	2	6.2	***		_				1	4.0
White crappie	6	18.8	1	1.6		_	1	5.6	_	-
Black crappie		10.10	7	± 1.44	_	_		-	1	4.0
	3	9.4	-	_	_	_		_	4	4.0
Freshwater drum	3	9,4	₩		_	-	-	-	-	
Total Number	32		64		65		18		25	
Number of Species	11		7		6		5		8	

TAGIES: 3-80 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 6 JULY 1981.

•	LOCAT] [] []	LOCAL	10H 47	LITCAT	IUN 13	LINCAL	1081-14	LOCAT	IDN 15
	NO.	3	NO.	2	HO.	X	NO.	Ζ	HO.	ž
DURUSUNA CEPEDIANUM AD	2	15-30	•		1	7.09		-	-	
CYTELRUS CARFIO AD	3	23,00	-	•	Ç,	45.45	·-			•
คกเกอรเล คับอรเหมนร กก	I	7,69	-	, -, -,	-	-			-	-
NOTINETS SPILOFTERUS AD	Ξ	-	_3	8.57	-	*0 *17			-	- '
MITROFIS ATHERINOLDES OU	2	15.38	31	88.57	<u>:</u>	18,18	1	66.67	•	
FIHEPHALES MULAPUS AN NOTSURIS SIMANIANUS AN	_	_	_		-			_	_	
CARE X BOLDFISH DYDRID	_	_	_		_			-		
HOTERPIS LUIRLINSIS AD	_		1	2,88	1	9.09		-	-	
ICTIONS BUBALUS AD	_	_		••	-					-
LEFURIS CYANCLIUS AD	3	231.08			2	1M.1A	L	14-67		
LEFORTS HACROCHINUS OF	ĩ	7.49	-		-		-		-	-
HICROPELIANS ON OHIENI AD	-	•				-	-		_	**
NUCKULTEMIS SALHOTDES AU	-	-	-		•	-	1	16.67		-
MMMEXIS ANNULARIS AL	-					••	-		-	-
AFRICOTROTUS GEUNDALMS AB	4	7.69			_		_	·		
			45-				ė	•		
HITAL NUMBER NUMBER OF SPECIES	73		.15j 3		1 <u>1</u> 5		3		9	

TABLE 3.3-81 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 22 JULY 1891.

	LOCAT	10N 11		10N 13		ION 13		YDN 14 _	LOCAT	ION 15	
	∤ H1.	X.	NO.	Z.	40.	χ	MO.	ž	кO.	ŗ	
DOMOSOMA CEPEDIANUM AD	a	61.54	3	5.00	1	3.57	1	12.50	7	12,50	,
CYPRINUS CARCIO AU BATROPIS HUMMINIUS AU	l.	7,69	- !	1.87		7,14 3,57	3	37,50	5	34,25	
NUTROPIS SPILOTTERUS AD	i	7.69 7.69	48	H0.00	24	65.21	4	50.00	2	12,50	
PINEFNALES VIGILAX AD LEPTHIS CYANGLENS AD	_		ត	0.33	_	Ξ.			į	6.25 25.00	
EFFORTS IDATETS AN RECRUPTEROS SALADIDES AR	2	15,38	-			•		-	i	6,25	
POMOXIS ANNO ARTS AN POMOXIS NIGROMACULATUS AN	_	_	<u> </u>	1.67	-			_	j	8.25	
PERCA FLAVESCENS AD			2	5.55	•	•	-	-	-	_	
					22						
TOTAL NUMBER NUMBER OF SPECIES	13 5		60 6		28 4		3		1 <u>6</u> 7		

TABLE 3.3-82 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 4 AUGUST 1981.

									·· ···· · · ··	
	LOCAT	308 11 Y	LOCAT	Y0N 12 ช	LOCAT	19N 13	LINCAT NO.	ION 14 2	ND.	TON 15 Z
CYPRIMIS CARPID AD MOTROFIS SPILOPTERUS AD MOTROFIS ATHEKTROICS AN CATOSTONIS COMMERSONI AD ICTALURUS NELAS AD LEPONIS TYMPELUS AD LEPONIS RUNTIS AD HICROFIEMIS DOCUMIENT AD APLODINOTIS BRUNNIENS AD APLODINOTIS SRUNNIENS AD	13 - 1	- 116,67 6,67 8,67 -	1 - - 1 1	33.33 33.33 33.33	18	94.74 - - 5.26	121-1	20.00 40.00 20.00 	. <u>1</u> <u>6</u>	14-29 85.71
TOTAL MIMBER AUMAER (IF SPECIES	15 3		3 3		19 2		5 4		7 ?	

TÄBLE 3.3-83 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEIMING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 17 AUGUST 1981.

	,,	TORATION 11		LOCATION 32		LUCATION 13		 ind 14	FOCATION 15		
	NO.	an II	NO.	2 2	ND.	7 X	NE.	2	NO.	X (3) E. 7	
DEROSONA CEPEDIANUM AR MUTRUPIS SPILOPTERUS AD HUTRUPIS ATHERINOIDES AD LEPOMAS HUMILIS AD HICROPTERUS DOLUMICUI AD	<u>i</u> - - -	100 - - - - -	j -	160 - - - - -	1 1 1 - -	33.34 33.33 33.33	B 2 1 1	66.67 16.67 8.33 B.33	- 1 1 -	50.00 50.00	
TOTAL MUMBER MUMBER OF SPECIES	<u>I</u> <u>1</u>		Ĭ		3 1		12 4		2 2		

TABLE 3.3-84 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 9 SEPTEMBER 1981.

	I.OCAY	 1014 11	 116301	 UN 12	LUCA1	10N 13		 ТЛИ 14		 IUN 15
	40.	2	140.	Z.	, 0и	2.	Nu+	3	. Mo.	Z.
ALDSA CHRYSOCHLORIS NUFROPIS HUDSONIUS AD			-	-	-	-	1	5,28	1	5.88 11.74
NOTROPIS SPTI OPTERIS OD	_					·	_		. 1	5.0A
HUIRUPIS ATHERINGIDES AD	Ft.	80.89	13	100	37	94.87	17	89.47	8	47.03
PIOCEMALES HODATUS AD		45 4 .	-	-			·-		ī	5,69
PIMEPHALES VIGILAX AD HOTPORIS LUTRENSIS AD	•	11.11	_		2	E. 417		-	-	_
LICHNIS MACROCHIRUS AR		-	-	_	2	5.13	4	5 <u>.</u> 23	,	11,76
ALCROPTERUS ROLONIEUT AD	-	-	-		-	_	-	-	ź	11.74
•										
TOTAL NUMBER Number of Species	y 2		13 1		35		19 7		17	
	-		-		2		3		,	

TABLE 3.3-85 SPECIES COMPOSITION AND PERCENT OF CATCH OF FISH COLLECTED BY SEINING AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, 22 SEPTEMBER 1981.

									3, 4	
	1 9ChT11	BN 14	1.00 n f	IDN 12	LIICATI	(ON 13		10N i4	L00431	.ÚN 15
	NG.►	2	NO.	2.	MD.	7.	i#Û.	Z.	HU.	7.
MOTROPIS CORMUNUS			_	_			1	3.70	-	
NOTROPIS ATHERINDIDES AD LIPUMIS CYANELLUS AD	1	100	1 1	91.47	5.	100	26	96,30	1	100
UTLANTA CAUMETERN UR	_	•	1	8.33	-			-	-	_
TREAL NIGHBOR -	1		12		5		27		1	
NUMBER OF SPECIES	Ī		2		Ĩ		2		1	

TABLE 3.3-86 NUMBER AND MEAN CONDITION FACTOR OF SELECT SPECIES OF FISH COLLECTED AT EACH SAMPLING LOCATION BELOW DRESDEN ISLAND LOCK AND DAM, JUNE-SEPTEMBER 1981.

				Locat	ion 11	<u>Locat</u>	ian 12	Locati	ion 13	Locati	ion <u>14</u>	Locat	ion 15	<u>Locat</u>	ion <u>16</u>
Month	Species	Maturity	<u>zex</u>	No.	Mean K ^d	<u> No -</u>	Mean K	No.	M ean <u>K</u>	No.	Mean "Ķ.	No.	Mean <u>K</u>	<u> 110 -</u>	Mean K
June	Carp	Adult Immature	ec Np	6 1 4	1.53 1.48 1.54	5 10 -	1.45 1.49	3 5 -	1.33 1.49	3 2 -	1.51 1.74	ъ́ 3	1.60 1.42	1	1.49 -
	Goldfish	Adult	M	-	-	3	2.02	1	1.60	-	_	_	_	-	-
	Carp x Goldfish	Adult Komature	M F -	3 1 5	1.81 1.77 1.86	- -	<u>-</u> -	- - -	**	<u>.</u> 	<u>.</u> - -	- -	- -	- -	- -
	Shorthead redhorse	Adult Immature	፣ -	-		1 -	1.03	- 2	1.08	-	- -	- -			<u>-</u> -
	Smallmouth bass	Adult	Ωri L	2	1.20	1	1.27 1.31	<u>-</u> -	<u>-</u>	<u>-</u>	-	- - 1	- - 0 BB	<u>.</u> -	<u>-</u>
July	Carp	Immature Adult Immature	- М Н	1 10 13 2	1.41 1.35 1.49 1.48	18 - 8 - 1	1.15 1.57 1.43 1.49	7 14] .40 1.59	1 2 2	1.40 1.41 1.31	6 6 5	0.88).37 1.54 1.38	4 4 -	1.61 1.61
	Goldfish	Aduit	ŀ	- ·	-		-	_	_	I	1.45	_	-	-	-
	Carp x Coldfish	Adult Tmmature	M -	2	1.63	<u> </u>	1.41	- -	- -	- -	- -	- - 1	- - 1.61	1	1.85
	Short head redhorse	Adult Jmmature	- F -	- -	- -	1 -	1.30	ï	1.05	-	<u>.</u>	-	-	-	<u>-</u>
	Smallmouth bass	Adult Immature	F -	ī	1.33	2 -	1.42	1	1.02	- 2	ي 1.10	- 2	_ 1.24	-	-

3-17.

Location 11

Location 12

Location 13

Location 14

Location 15

Location 16

⁽a) Mean K-factor

⁽b) M = Male

c) F⇒Female

 $⁽d) \quad U = Undetermined$

TABLE 3.3-87 INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS BELOW DRESDEN ISLAND LOCK AND DAM, 22-24 JUNE 1981.

			Total	Calch ^a			i	lumber a	nd Pi	ercent A	ffect	ted/Sampl	ing l	ecation		
	Physical	Disease or	Mumber	Percent	_	11		12		13		14		15		16
Species	Abnormal ity	<u>Parasite</u>	Affected	Affected	4	<u> </u>	₹.	<u>F</u>	<u>F</u>	1	1	1	4	3_	*	<u>*</u>
Longnose gar	Eroded fins Snout missing		1	100.0 100.0	_b -	-	-	-	<u>-</u>	<u>-</u>	1	108.0 100.0	<u></u>	-	-	-
Carp	Deformed fins Eroded fins Abrasions Knothead Lesions Lacerations Deformed mouth		14 7 3 2 1 1	19.7 9.9 4.2 2.8 1.4 1.4	1 1 0 0 0	6.2 6.2 6.2 0.0 0.0 0.0	9 2 1 2 1 0	36.0 8.0 4.0 8.0 4.0 0.0	2 1 0 0 1 0	22.2 11.1 11.1 0.0 0.0 11.1 0.0	0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	2 3 0 0 0 0	15.4 23.1 0.0 0.0 0.0 0.0	0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0
Carp x Goldfish	Eye missing		1	11.1	1	11.1	-	-	-	_	_	-	-		_	_
River carpsucker	Eroded fins		1	14.3	0	0.0	0	0,0	1	50.0	0	0.0	-	_	_	-
Quillback	Abrasions		1	33.3	-	-	0	0.0	-	-	1	100.0	-	-	-	-
Silver redhorse	Eroded fins		2	100.0	2	100.0		_	-	_	_		-	•	-	-
Black bullhead	Abrasions Lesions Eroded fins		5 1 1	23.8 4.8 4.8	4 1]	44.4 11.1 11.1	1 0 0	12.5 0.0 0,0	0 0 0	0.0 0.0 0.0	0 0 0	0.0 0.0 0.0	0 0 0	0.0 0.0 0.0	-	- -
Green sunfish	Eroded fins Lacerations		1 1	6.2 6.2	1	25.0 0.0	0 1	0.0 33.3	0	0.0	0	0.0 0.0	0	0.0 0.0	- -	-
#luegill	Eroded fins		. 1	14.3	0	0.0	0	0.0	-		9	0.0	1	50.0	-	-
Largemouth bass	Deformed fins Eroded fins		k 1	6.7 6.7	0	0.0 0.0	0	0.0 0.0	0 1	0.0 25.0	0 0	0.0 0.0	1 0	33.3 0.0	<u>-</u> -	<u>-</u>
White crapple		Weascus spp (Blackspot)		7.1	1	9.1	O.	0.0	-		Ü	0.0	-	-	-	-
Yellow perch		<u>Neascus</u> sp	ı. 1	100.0		-	-	-	-	-	-		1	100.0		-
Freshwater drum	Abrasions		1	14.3	0	0.0	0	0.0	-	-	1	100.0	· -	-	**	-

⁽a) fotal match represents combined catch from all locations and all methods. (b) Species not collected.

TABLE 3.3-88 INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS BELOW DRESDEN ISLAND LOCK AND DAM, 6-8 JULY 1981.

			Total	Catch ^d				Number a	nd Pa	ercent A	lffec:	ted/Samp	n ing	Location		
Speci <u>es</u>	Physical Abnormality	Disease or Parasite	Number Affected	Percent Affected	<u> </u>	11 %		12	<u>#</u>	13	<u> </u>	14 %	₹	15	#	16 3
Carp	Eroded fins Lordosis		9	13.8 1.5	 2 8	13.3 0.0	2 0	10.5 0.0	3 0	1.ES 0.0	0 1	0.0 50.0	1 0	7.7 0.0	1 0	33.3 0.0
Spotřin shiner		Neascus spp.	1	33.3	_ !	b _	1	33.3	_	_	_	-	_		_	
Shorthead redhorse	Froded fins		1	100,0	-	_	1	100.0		-	_	-	-	_		_
Black bullhead	Lacerations		2	66.7	1	50.0	-	_	-	-	_	•	_	_	-	
Green sunfish	Lacerations	<u>Neascus</u> spp.	1 1	7.1 7.1	0 0	0,0 0.6	1	100.0 100.0	0 0	0.0 0.0	0 0	0.0	0	0.0 0.0	<u>-</u>	-
filuegill	Eroded fins		Ĺ	33.3	0	0.0	_	-	_	-	_		1	100.0	-	-
Largemouth bass	Eroded fins Tumor		l I	16.7 16.7	0	0.0 0.0	 	50.0 50.0	-		0 0	0.0 0.0	0	0.0 0.0	- -	-
Freshwater drum	Eroded fins Scar		1 1	50 .0 50 .0	0	0.0 0.0	1	(00.0 100.0	- -	-	. -	<u>.</u>	_	<u>-</u> -	-	-

⁽a) Total catch represents combined catch from all lecations and all methods.

⁽b) Species not collected.

TABLE 3.3-89INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS BELOW DRESDEN ISLAND LOCK AND DAM, 20-23 JULY 1981.

			Toral	Catch ^a				Number a	and P	ercent /	Affec	ted/Sampl	ling k	ocation		
	Physical	Disease or	Number	Percent		11		12		13		14	· · · · · · · · · · · · · · · · · · ·	15		16
<u>Species</u>	Abnormality	<u>Parasite</u>	Affected	Affected	#	<u> </u>	<u> </u>	<u>ī</u> _	*	35	3	<u> </u>	3	<u>\$</u>	1	3
Goldfish	Eroded fins Lesion		<u>l</u>	100.0 100.0	_b	-		-	-		1	100.0 100.0	_	-	_	_
			-		_		_				_		_		_	
Carp	Deformed fins		8	13.3	2	11.8	2	13.3	3	25.2	Ö	0.0	ũ	0.0	I	16.7
	Eroded fins		5	10.0	0	0.0	2	13.3	1	8.3	0	0.0	2	28.6	1	16.7
	Deformed mouth		i	1.7	Ω	0.0	T	6.7	0	0.0	0	0.0	0	0.0	0	۵,۵
Carp x Goldfish	Deformed fins		1	33.3	O	0.0	1	100.0		•	-	-	~	-	0	0.0
Qu†11back	Eroded fins		1	100.0	_	-	1	100.0	_	~		~	-	-	-	-
Golden redhorse	Eroded fins		4	50.0	0	0.0	-	~	3	50.0	1	100,0	-	_	-	-
White bass	Рореуе		I	33.3	•	-	O	0.0	1	50.0	-	~	-	-	-	_
Green sunfish	Deformed mouth		1	3.4	0	0.0	1	50,0	0	0.0	o	0.0	0	0.0	_	_
ar deri sam ran	1010101000 10000	Neascus spp		6.9	ĭ	14.3	Ô	0.0	Ö	0.0	ĩ	11.1	ŏ	0.0	-	-
,		(Blackspot)		***	•	- / •	_		-		_					
Bluegill	Eroded fins	•	1	20.0	_	_	-	-	~	₩	-	-	1	25.0	-	•
Largemouth bass	Lesion		1	5.6	}	25.0	O	0.0	-	-	O	0.0	0	0.0	-	-

⁽a) Total catch represents combined catch from all locations and all methods.

3**-1**/

⁽b) Species not collected.

TABLE 3.3-90 INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS BELOW DRESDEN ISLAND LOCK AND DAM, 3-5 AUGUST 1981.

			Total	<u>Catch</u>			N	lumber a	nd P	ercent .	Affect	ed/Sampl	ing L	ocation		
	Physica?	Ofsease or	Number	Percent	₩ VI .'	11		12		13		14	7	15		16
Species	Abnormal ty	Parasite	Affected	Affected	<u>\$</u> .	<u>L</u>	3	<u>L</u>	<u>*</u>	<u> </u>	<u>y</u> -	<u> </u>	3	2	¥	<u>x</u>
Gizzard shad	Lesion		1	3.l	0	0.9	1	6.7	0	0.0	0	0.0	0	0.0	-p	_
Carp	Eroded fins		8	12.1	O	0.0	0	0.0	0	0.0	2	16.7	5	33.3	1	50.0
·	Tumor		2	3.0	0	0.0	Ð	0.0	0	0.0	1	8.3	ŀ	6.7	ū	0.0
	Operculum miss:	ng	1	1.5	0	0.0	ŋ	0.0	0	0,0	1	8.3	Û	0.0	Ü	0.0
Bigmouth baffalo	Eye missing		1	100.0	1	100.0	-	-	-	•	_	-	-	~	-	~
Green sunfish	Eroded fins		1	12.5	1	33.3	_	_	***	-	0	0.0	0	0.0	-	
		Fungus	1	12.5	0	0.0	-	-	-	-	Q_{μ}	0.0	· 1	50.0	-	•
Largemouth bass	Eroded fins		ì	7.1	Ω	0.0	-	~	1	100.0	0	.0.0	0	0.0	-	-
Freshwater drum	Erodeá fins		ı	50,G	1	100.0		-	Q	0.0	-	~	-	**	-	-

⁽a) Total catch represents combined catch from all locations and all methods. (b) Species not collected.

TABLE 3.3-91 INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS BELOW DRESDEN ISLAND LOCK AND DAM, 18-20 AUGUST 1981.

			Totai	Catch ^a				Number a	ınd Pe	rcent A	\ffec t	ed/Samp1	ing Lo	cation		
	Physical Di	isease or	Number	Percent		11		12		13		14		15		16
<u>Species</u>	Abnormality P	arasīte	Affected	Affected)	1	<u> </u>	75	//	<u>z</u>	<u>*</u>	<u>1</u>	#	<u> </u>	<u> </u>	3
Coldeye	Eroded fins		1	20.0	0	0.0	1	25.0	b	_	-	-	-	_	· -	***
Carp	Eroded fins		1	3.4	0	0.0	1	9.1	۵	0,0	0	0.0	0	0,0	*-	_
•	Deformed fins		Ţ	3,4	0	0.0	0	0.0	0	0.0	1	25.0	0	0.0	-	-
River carpsucker	Eroded fins		2	50,0	-	-	1	100.0	0	0.0	L	50.0	-	-	-	-
Largemouth bass	Eroded fins		1	5.9	0	0.0	1	100.0	0	0.0	0	0.0	a	0.0	_	_
-	Scars on operculum		1	5.9	1	25.0	0	0.0	Q	0.0	0	0.0	0	0.0	-	-

⁽a) Total catch represents combined catch from all locations and all methods.

⁽b) Species not collected.

TABLE 3.3-92INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS BELOW DRESDEN ISLAND LOCK AND DAM, 8-10 SEPTEMBER 1981.

	Physical	Disease or	Total Number	Catch ^a Percent		- ₁₁		Number 18		Percent 13		ected/Sa		ng Loca 15		£
Species	Abnormality	Parasi te	Affected.	Affected	ï.	<u> </u>	#		#	<u>r</u>	<u>#</u>	1	Ţ	<u> </u>	<u>#</u>	<u></u>
Carp	Deformed fins Eroded fins Eye missing Knothead Tumor	Ichthyoph- thiriasis (White sp		27.3 4.5 4.5 2.3 2.3 2.3	2 0 1 0 0	33.3 0.0 16.7 0.0 0.0	5 1 1 0 1 1	45.4 9.1 9.1 0.0 - 9.1 9.1	2 1 0 0 0	33.3 16.7 0.0 0.0 0.0 0.0	0 0 0 0	0.0 0.0 0.0 0.0 0.0	2 0 0 0 0	20.0 0.0 0.0 0.0 0.0 0.0	1 0 0 1 0 0	14.3 0.0 0.0 14.3 0.0 0.0
Carp x Goldfish	Eroded fins		ì	50.0	1	100.0	0	0.0	ட		-		_	-	-	-
Smallmouth buffalo	Eroded fins		1	100.0	-	-		-	-		-	_	1	100.0	-	-
Golden redhorse	EroJed fins		1	100.0	-	-	1	100.0	_	-	-	-	-	-	-	-
Shorthead redhorse	Eroded fins		ì	50.0	-	-	-		-	_	0	0.0	-	-	1	100.0
Black bullhead	Damaged caudal	51 13	1	100.0	-	-	-	-	-	-	1	100.0	-	-	-	-
Green sunfish	•	Neascus sp. (Blackspot)		4.2	0	0.0	-	MANA	-		0	U. C	1	9.1	-	-

⁽a) Total catch represents combined catch from all locations and all methods.

⁽b) Species not collected.

TABLE 3.3-93 INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED AT ALL SAMPLING LOCATIONS BELOW DRESDEN ISLAND LOCK AND DAM, 21-23 SEPTEMBER 1981.

			Total	Catch ^á			ł	Number a	an d	Percent	Affe	cted/Sa	mp 1 fi	ng Loca	tion	
Species	Physical Abnormality	Disease or Parasite	Number Affected	Percent Affected	ij	11 - 1	<u> </u>	<u> </u>	7	13 <u>T</u>	<u>#</u> J	<u>4</u> <u>u</u>	<u>#</u>	15 <u>\$</u>	11	3
Carp	Eroded fins Deformed fins Eye wissing Deformed head		3 1 1	7.0 2.3 2.3 2.3	1 1 0 0	7.7 7.7 0.0 0.0	1 0 1 0	8.3 0.0 8.3 0.0	1 0 0 0	16.7 0.0 0.0 0.0	0 0 0 0	0.0 0.0 0.0	0 0 0 1	0.0 0.0 0.0 14.3	0 0 0 0	0.0 0.0 0.0 0.0
Carp x Goldfish	Eroded fins No caudal fin		2 1	18 - 2 9 - 1	3 1	16.7 15.7	_ _b	-	1	-	0	0.0 0.0	1 0	33.3 0.0	-	- -
Golden redhorse Shorthead redhorse	Eroded fins Eroded fins	Fungus	1 1 1	20.0 33.3 33.3	- - -	- - -	1 1	33. 3 33. 3	1 - -	50.0 -	-	- -	0 -	D.O -	-	•

⁽a) Total catch represents combined catch from all locations and all methods. (b) Species not collected.

				L	ocation.								Lo	ocation_	12 :			
		19798	-		1980b	,		1981°			1979a			1980b			1981€	
lax <u>a</u>	ìlo.	ChEq.	Percent of Catch	No-	Annua I CPE	Percent of Caich	No.	Annual EPE	Percent of Calch	No.	Annua!	Percent of Catch	No.	Annual CPE	Percent of Catch	<u>Mo.</u>	Annuel CPE	Percent of Cate
AMERICAN EEL	_	-		_	_	_	_	_		_	_	_	_	-	-	_	_	_
LONGNOSE GAR	-	-	-	-	-	-	-	•	_	-		-	-	-	• =	1	0.6	0.3
SKIPJACK HERRING	-		-	11	14.7	4.5	2	1.4	0.4	S	1.6	0.4	-	-	•	2	1,3	0.6
GIZZARU SHAD	9	7.2	2.6	30	40.0	12.3	55	32.0	10.0	4	3.2	0.9	27	36.0	17.8	81	49.3	22.8
MOONEYE	_	_	_		_	_	-	***	_	1	0.8	0.2	-	_	-	-	-	_
GRASS PICKEREL	_	-	-	1	1.3	0.4		_		4		-	_		_	-	-	-
NORTHERN PIKE	2	1.6	0.4	1	1.3	N,4	-	_		1	0.8	0.2	_		_	•	_	
CYPRINTDAL	_	127	-	•		,,	1	0.7	0.2	_		-	-		_	_		_
CENTRAL STONEROLLER	_	_	_		_		_	~+-		_	_	_	_	_		_	-	_
COLUI IZH	7	5.6	1.6	1	1.3	0.4	_	_		б	4.8	1.3	_			3	1.7	0.8
CARP	13	10.4	2.9	14	18.7	5.8	67	34.7	10.9	19	15.2	1.2	5	5.7	3.3	53	31.9	15.0
CARP x GOLDFISH	1	0.8	9.2	6	8.0	2.5	15	8.7	2.7	1	0.8	0.2	_		7.0	-	02.0	
	-			U	0.0					_	0.0	445	_	_	-	1	0.6	0.3
GGLDEN SHINER	2	1.5	0.4		-		1	0.6	0.2	245		76.3	102	136,0	67.1	145	84.3	39.7
EMERALD SHIMLR	321	256.8	72.8	150	200.0	61.7	306	177.4	55.6	342	273.6		102	130.0	4.1	143	04.5	331.
COMMON SHINER	-		_	7	-	-	-	-		-			-	-	-		_	_
SPOTTAIL SHIMER	5	4.0	1.1	•	-	-	5	1.1	0.3	1	8.0	0.2	_	~	-	_	_	-
SPOTFIN SHINLR	3	2.4	0.7	•	-	-	-	-	-	ı	0.0	0.2	-	-	-	•	-	-
SAND SHINLR	4	3.2	0.9	_	-	-	-	-	~	1.3	10.4	2.9	-	-		_	-	-
MIMIC SHINER	_		-	-	-		-	-	_	3	2.4	D.7	1	1.3	0,6	-	-	-
STEELCOLOR SHIMER			-	-	-	_		_	_	i	0.8	0.2	-	_	-	-	-	-
WOTROPIS SP.	Ī	5.6	1.6	_	-			_	-	_	_	-	_	-	4	-	-	
BLUNTNOSE MINNOW	4	3.2	0.9	_	_	_	-	-	-	6	4.8	1.3	_	_	-	1	0.7	0.3
FATHEAD MINNOW	1	0.8	0.2	_	-	_		_	_	_	-	-	_			-	-	_
BULLHEAD ATNHOW	ā	3.2	0.9	_	_	_	_	_	_	1	O.B	0.2	1	1.3	0.6	_	-	-
RIYFR CARPSUCKER	i	0.8	0.2	9	2.7	6.8	2	1.1	0.3	2	1.6	0.4	_		_	.5	3.0	1.4
OUTLIBACK	6	4.8	1.4	ā	10.7	3.3	ž	1.3	0.4	16	12.8	3.6	3	4.0	2.0	ь	3.0	1.4
HIGHFIN CARPSUCKER	v	4,0	1.4		10.,,	-	_	1.~		14	11	-	-		-	-	-	_
WHITE SHOKER		_	_	7	9.3	2.9	_	_				_	i i	1.3	0.6	1	0.6	0.3
NURTHERN HOSSUCKER	_	-	-	,	2.3	2.7	_	•	_	1	0.8	0.2			-	-		-
	_	-	-	-	-	7	-	-	-	7	0.6	U.E	-		_	1	0.6	0.3
SMALL MOUTH BUFFALO	-	-	-	-	-	-	-	~ ~	, T	-		_	-	_	_	_	-	
BIGMOUTH BUFFALO		_	-	-	_	-	1	0.7	0.2	_	1			_			_	_
S!LYER REDHORSE	-	-	-	-	-	-	2	1.1	0.3	2	1.6	0.4	-	1.3	0.6	I	0.7	0.3
GOLDEN REDHORSE	_	_	-		-	-	1	Ո₊6	0.2	3	2.4	0.7				3	1.7	0.8
SHORTHEAD REDMORSE		-	-		-	•	_			-			5	6.7	3.3	8	4.6	2.2
BLACK BULLMEAD	I	5.6	1.6	**	-		16	9.1	2.9	Э	2.4	0.7	-	-	-	0	4.6	2.2
BROWN BULLHEAD	-	-	-	1.	i.3	0.4	-		-	-		· • •	-	-	-	-	-	-
YELLOW BULLHLAD	_	-		-	-	-	-	-	, -	ı	9.0	0.2	-		-	-	-	-
CHANNEL CATEISH	-	-	-	_	-	-	1	0.6	0.2				-	-	-	-	-	-
WHIVE BASS	2	1.6	0.4	3	4.0	1.2	1	0.6	0 ₌2	1	0.8	0.2	-	_	-	6	3.6	1.7
VELLOW BASS	-	_	-	_	-		2	l. L	U.3	v	_	-	2	2.7	1.3	S	1.1	0.5
TROUI-PERCH	-	_	_	-	_	_	-	-	_	-		-	-	-	-	-	-	
ROCK BASS	2	1.6	0.4		_	-	1	0.7	0.2	_	_	_	-	-	-	1	0.5	0.3
BREEN SUNFISH	28	22.4	6.3	,	2.7	9.8	25	15.0	4.7	5	4.0	1.1	2	2.7	1.3	5	2.9	1.4

TABLE 3.3-94 (CONT.)

				· -											***************************************			
				Le	cation	11	•						Łç	cation	12			
		1979			1930t			1981¢			1979	l		19 8 0)		198)	
Taxa	<u>No-</u> .	ChCq vunna j	Percent of Catch	No.	Annua I CPL		Na.	Annua CPE		110 -	Annual CPE d	Percent of Calch	No.	Annual CPE	Percent of Catch	No.	Annual CPE	Percent of Catch
PUSAP KINSFED		_	_	_	-	-	_	-	-	_	_	_		-	-	_		_
ORANGESPOTTED SUNFISH	3	2.4	0.7	L	1.3	0.4	9	5.6	1.B	4	3.2	0.9	1	1.3	0.6	1	0.6	0.3
BLUCGTI, L	1	0.8	0.2	-	-	-	6	3.4	1.1	1	0.0	0.2	-	_	-	3	1.9	Q.9
LONGFAR SHMFISH	3	2.4	0.7	_	_	-	-	-	-	_	-	-	-	-	-	-	-	-
REDEAR SANFISH	-	-	_	-	-	_	-	-	-	_	-	<u> </u>	-	•	-			-
SUNFISH HYBRID	~	-	-	~	-	_	1	0.7	0.2	_	-	-	-	-		-	_	-
SKALLNOU (IL UASS	2	1.6	0.4	1	1.3	0.4	4	2.3	0.7	2	1.6	D.4	-	_	***	11	6.3	3.0
SPOTTED BASS	-		-	1	1.3	0.4	-	-	•	_		-	-	-	***	_		-
EARGEMOUTH BASS	3	0.8	0.7	1	1.3	0.4	19	11.6	3.6	1	0.8	0.2	1	1.3	0.6	10	5.9	2.8
WHITE CRAPPIE	1	8.0	0.2	2	2.7	0_8	7	4.1	1.3	1	0.8	0.2	-	_		5	3.0	1.4
BLACK CRAPPIE	1	2.4	0.2	~	-	-	1	0.6	0.2	-	-	_	_	-	_	2	1.3	0.6
YELLOW PERCH	-	-	***	-	-	-	-	-	-	-	- '	_	_	-	_	_	-	-
MALLEYE	-	-	-	_	_	-	-	-	_	-	-	_	_	-		_		-
FRESHNATER DRUM	-	-	-	-	-	-	3	1.9	0.6	3	2.4	0.7	_	_	-	3	1.7	8.0
TOTAL NUMBER	443			243			543			448			152			360		
MUMBER OF SPECIES	25			18			24		4	29			13			26		
TOTAL ANNUAL CPF		354.4	•		323.9			318.9			358.4			202.4			212.1	

TABLE 3.3-94 (CONT.)

		10702		<u>i</u>	ocation 1900b			10015					E	ocation	14			
		1979*						1901c			1979			1980			1981	
Taxa	No.	Anmai CPE ^d	Percent of Catch	No.	Annua 1 <u>CPE</u>	Percent of Catch	<u>il</u> o.	Annual CPE	Percent of Catch	No.	Annual CPE	Percent of Catch	No.	AnnuaT CPE	Percent of Catch	No.	Annua) CPE	Percent of Catch
AMERICAN EEL	_		-	_	-	_	_		-	-	-		_	•	-	1	0.6	0.2
LUNGNOSE GAR	-	-	-	-	-		1	0.6	0-2	-	-	-	-	**	-	1	0.4	0.1
SKIPJACK HERRING	-	-		4	5.3	1.4	•	_	~	1	1.3	0.3	1	1.3	9.5	-	-	-
GIZZARD SHAD	5.	4.D	1.7	103	137.3	35.9	76	43.4	17.7	5	6.7	1.7	32	42.7	18.2	64	36 . 1	11.2
MEONEYE	-	-	-	_	-	-	-	-		-			-	-	-	_	-	-
GRASS PICKLREL	_	~	-	-	-	-	1	0.6	0.2	1	1.3	0.3	-		-	1	0.4	0.1
NORTMERN PIKE	_		-	-	•	-	-	-	-	-	_	-	1	i.3	0.6	1	0.6	6,2
CYPRINIDAE	-	_		-	-		-	_		-	_	_	-	_	-	-	-	-
CENTRAL STONLROLLER	<u>1</u>	0.8	0.3	Ţ	1.3	G.3	-	-	-		_	-	-	-	-	-	-	
BULDFISH	4	3.2	1.3		_		1	0.5	0.2	9	12.0	3.2	5	δ.7	2.8	, L	0.8	0.2
CARP	62	49.5	20.9	4	5.3	1.4	18	10.3	4.2	8	10.7	2.8	12	16.0	6.B	35	19.4	6.0
CARP x GOLUFISH	5	4.0	1.7	1	1.3	0.3	-	_	_	2	7.7	0.7	-	-	_	2	1.1	0.3
GOLDEN SHINER	_		-	-	-	-	-	-	-	-	_	-	1	1.3	0.6	-		_
ERERALD SHOREA	162	129.6	54.7	125	166.7	43.5	255	145.7	59.6	190	253.3	66.7	105	140.0	59.6	375	280.1	64.7
COMMON SHINER		_	-	_	_	-	_	_	-	-	-	-	-	_	-	-	-	-
SPOTTAIL SHIMER	5	4.0	1.7	7	9.3	2.4	14	6*0	3.3	8	10.7	2.8	1	1.3	0.6	2	170	0.3
SPOTFIN SHINER	-	-	_	_	-	_	_	-	_	9	12.0	3.2	-	-	-	-	_	-
SAND SHINER	_	-	-	_	-	_	_		-	11	14./	3.9	-	-		-	-	-
MIMIC SHINER	_	_	_	_		_	_	-	_	1	1.3	0.3		-	-	u	-	-
STEELCOLOR SHINFR	_		_	_		-	_		_	1	1.3	0.3	-	-	-	-	-	-
MOTROPIS SP.	_	-	_	_	_	_	_	-	_	-	-	_	-		_	-	-	-
BLUNINOSE SHIMFR	5	4.0	1.7	2	2.7	0.7		_	-	11	14.7	3.9		-	-	3	1.7	0.5
FAIHEAD MINNON		_					-	_	•	_	-	-	_	-	-	1	0.6	0.2
BULLHEAD HINNOW	Ą	3.2	1.3	_	_	_	1	0.6	0.2	5	6.7	1_7	_	_	-	-	_	-
RIVER CARPSUCKER	·			_	_		ŝ	1.7	0.7	_	_	-	_	-	-	3	1.6	0.5
OUT I.I. BACK	3	2.4	1.9	4	12,0	3.1	_	_	_	1	1.3	0.3	2	2.7	1.1	2	1.0	0.3
HIGHETH CARPSUCKER	-		_	_			_	_	_	_	-	_	_	-	_	4	-	-
WHITE SUCKER	_		_	18	24.0	6.3	2	1.1	0.4	_	-	-	Į.	1.3	0.6	1	0.6	0.2
NOATHERN HOGSWOKER	-	_	-				-			_	-	-	_	-	_	-	-	-
SMALLMOUTH BUFFALO	_	· _	_	_	_	_	1	0.6	9.2	_			-	_	_	-	-	-
BIGHOUTH RUFFALO	_	_	_	_	_	_	-	-	, m	_	_	_	_	-			_	-
SILVER REDHORSL	_	_	_	_	_	_	1	0.6	9.2	_	_	-	_	-	-	-		_
GOLDEN REDHORSE	_		_	2	2.7	0.7	ŷ.	5.1	2-1	-	_	_	_	_		1	0"ճ	0.2
SHOW THEAD REDNORSE	_	_	_	-		4.,	 1	1.7	0.7	-	_	_	_	_	_	1	0.6	0.2
BLACK BUE! HEAD	ā	3.2	1.3	ĩ	1.3	0.3	ī	0.6	0.2	1	1.3	0.3	1	1.3	0.6	3	1.6	0.5
BROWN BULLHEAD	-	-9.6	-	_	-	7.3		-		_			_		-	-	-	_
YELLOW BULLHEAD	_		-	_	 M	_	_	<i>-</i>	_		_	_	_	_	_	1	0.6	0.2
CHANNEL CAN 15H	_	_	_	_	-	_	í	0.6	0.2	_	_	_		-	_	_		_
WILLE BASS	_	_	_	1	1.3	0.3	4	2.3	0.9	_	,	_		_	_	_	-	_
YELLOW BASS	_	_	_	ĵ	1.3	0.3	5	2.9	Ĩ,ź	_		_	_	•	_	1	0.6	0.2
TROUT-PERCH			_		u		2	1.I	0.4	_	_	-	_	•	_	-	-	-
RUCK BASS	1	0.8	0.3	_	_	_	-	1.1	V.7	_	_	_	_	-		1	0.6	0.2
		A11	U . J.	_	-	-	-	1.1	_		-	6.3		14.7	б . 2	40	22.5	7.0

TABLE 3.3-94 (CONT.)

				<u>L</u> _	gation	T							Lo	cation.	14			
		1979a			1980	D		1981c			1979			1980			1981	
<u>Taxa</u>	No.	ChEq Tunnal	Percent of Catch	No.	Annual CPE	Percent of Catch	Ko.	Annual CPE	Percent of Catch	No.	Annua CPE	Percent of Catch	No.	Annual	Percent of <u>Catch</u>	No.	Annual CPE	Percent of Catch
PUMPKINSEEO	_	_	_	_	_	_	1	0.6	0.2	-	-	-	-	-	. •	1	0.6	8.0
ORANGESPOTTED SUNFISH	7	5.6	2-4	i	1.3	0.3	4	2.3	0.9	3	4.0	1.0	2	2.7	1.1	1	0.4	0.1
BLUEGILL	i	0.8	0.3	_	_	-	3	1.7	0.7	-	-	-	-	-	-	-	-	-
LONGEAR SUNFISH		_		_	-	-	_	_	_	-	-	-	-	***	-	-	-	-
REDEAR SUNFISH	_	_	_	_		-	•		-	-	-	-	-	•	-		~ .	
SUMFISH HYBRID	-	_	_	_	_	_	_		_	u		- .	-	-	-	Ŧ	0.4 4.0	0,1 1,2
SMALLHOUTH BASS	1	0.8	0.3	_	_	_	5	2.9	1.2	1	1.3	0.3	-	-	-	,	4_1	1.2
SPOTTED BASS	_			_	_	_	_	_	-	~	-	•	-			22	13.0	4. U
LARGEMOUTH RASS		_	_	-	_	_	9	5.1	2.1		-	-	Ł	1.3	0.6	23	0.4	0.1
WHITE CRAPPIE	1	0.8	0.3	1	1.3	0.3	4	2.3	0.9	-	-	-	-	-	-		0.4	···
BLACK CRAPPIE	3	2.4	1.0	-	_			-	-	-	-	-	-	-	-	-	_	
YELLOW PERCH	_	-	-	-	-	_		-	~	-	-	_	•	-	-	7	1.4	0.4
WALLEYE	-	_	-	_	-	-	3	0.6	0.2	-	-	-	-	_	_	1	0.4	ŭ.i
. FRESHWATER DRUN	-	-	-	_	-	-	-	-	-	-	-	-	_	-	-		044	
TOTAL NUMBER NUMBER OF SPECIES	29 6 17			287 16			42R 27			286 17			176 14			57 <i>9</i> 28		
TOTAL ANNIAL CPE		236.8		~=	362.4		71	244.6			E.18E			234.6			321.6	

TABLE 3.3-94 (CONT.)

				L	ocation	15			
	*	1979	- - · - · · · · · · · · · · · · · · · · 		1980			1981	
		Annual	Percent		Annual	Percent	475 /	Annual	Percent
<u>Taxa</u>	No.	EPE .	of Catch	No.	CPE	of Catch	No.	CPE	of Catch
AMERICAN EEL	-	-	-	**	ь		-	-	_
LONGNOSE GAR		-	-	1	1.3	0.3	1	0,4	0.1
SKIPJACK HERRING	-	_	-	5	6.7	i.6	-	_	_
GIZZARD SHAD	12	18.0	3,0	52	69.3	16.8	74	42.1	. 10.4
MOONEYE	_	-	•	-	-	_	3		•
GRASS PICKEREL	-	-	_	_	-	· _	1	0.6	0.1
NORTHERN PIKE	2	2.7	0.5	_	-	_	2	1.1	5.0
CYPRINIDAE	-	_	_	_	_	_	_	_	_
CENTRAL STONEROLLER	***	_	-	_		_	**	_	_
GOLOFISH	13	17.3	3.3	1	1.3	0.3	_		_
CARP	17	22.7	4.3	24	32.0	7.8	55	34.6	8.5
CARP X GOLDFISH	_		_	i	1.3	0.3	4	2.3	0.6
GOLDEN SHINER	-		-		-	-			~.0
EMERALD SHINER	296	394.7	74.7	171	228.0	55.3	459	262.0	64.9
COMMON SHINER		35711	-	1/1		27.64	1	0.6	0.1
SPOTIALL SHINER	1	1.3	0.2	6	9.0	1.9	ī	0.6	0.1
SPOTFIN SHINER	4	5.3	1.0			1.13	i	0.6	0.1
SAND SHINER	11	14.7	2.8	_	-		*	U+U	
MIMIC SHINER	11	1471	2.U -	_	**		-	-	-
STEELCOLOR SHINER	_		_	-	_	<u>-</u>	_	_	-
NOTROPIS SP.		***		-	_		-	_	_
BLUNTNOSE MINNOV	- 5		1.3	1	1.3	0.3	2	1.1	0,3
		6.7			1.3		2		
FATHEAD MINNOW			-	- 4	-	~~	-	-	-
BULLHEAD MINNOW	8	10.7	2.0	1	1.3	0.3	-	~ -	-
RIYER CARPSHCKER	1	1.3	0.2	_		~~	1	0.6	0.1
QUILLBACK	3	4.0	0.8	. 2	2.7	0.6	_		~~.
HIGHEIN GARPSUCKER	_	-	-				1	0.5	0.1
WHITE SUCKER	-	-	-	18	24.0	5.8	1	0.6	0.1
NORTHERN HOGSUCKER	-	-	-	~	-	-	-		<u>-</u> .
SMALLMOU[H BUFFALO	-	_	-	-	-	-	1	0.6	0.1
BIGMOUTH BUFFALO	-	-	-	-	-	- `	-	_	-
SILVER REDITORSE	_	_	-		-	<u>.</u>	-	-	-
GOLDEN REDHORSE	-	-	-	9	12.0	2.9	3	1.7	0.4
SHORTHEAD REDHORSE	_	-	-	2	2.7	n.6	-	-	-
BLACK BULLHEAD	-	_	-	1	1.3	D.3	2	1.1	0.3
BROWN BULLHEAD	-	-	-	-	-	-	-		-
YELLOW BULLHEAD	_	-	-	-	-		1	0.6	0.1
CHANNEL CAIFISH	1	1.3	0.2		-	-	_	_	-
WHITE BASS	_	-	-	_		_	-		-
YELLOW BASS	_	-	-	_	_	_		u	_
TROUT-PERCH	_	_	_	_	_	.	_	~	_
ROCK BASS	_	-			_	_	1	0.6	0.1
GREEN SUMFISH	10	13.3	2.5	ą	10.7	2.6	39	21.9	5.4

TABLE 3.3-94 (CONT.)

				L	ocation	15			
		19/9		•	1980			1981	
		Annua	Percent		Аплиа	Percent		Annual	Percent
<u>Taxa</u>	₩o.	CPE.	of Catch	No.	CPE	of Catch	No.	CPE	of Catch
PUMPKINSEED	_	_	_	-	-	_	1	0.6	0.1
ORANGESPOTTED SUNFISH	1	1.3	0.2	_	_	_	3	1.6	0.4
BLUEGILL	1	1.3	0.2	1	1.3	0.3	9	5.1	1.3
LONGEAR SUNFISH	_		_	_	_	_	_	-	_
REDEAR SUNFISH	1	1.3	0.2	-	-	-	_	_	_
SUNFISH HYBRID		_	_	_	-	-	_	-	-
SMALLMOUTH BASS	7	9.3	1.8	2	2.7	0.6	6	3.3	0.8
SPUTTED BASS	-	-	-	-	_				
LARGEMOUTH BASS	1	1.3	0.2	2	2.7	0.6	31	17.1	4.2
WHITE CRAPPIE	-	-	_	_	-	-	_		-
BLACK CRAPPIE	i	1.3	0.2	_	_		2	1.0	0.2
YELLOW PERCH		_	-		_		1	0.6	0.1
WALLEYE	_			_	_			_	_
FRESHWATER DRUM	_	-	-	1	1.3	0.3	-		-
Total Number	396			309			714		
Number of Species	20			19			26		
Total Amnual CPE		528.0			411.9			403.4	

⁽a) Collection periods were in May, June, August and Movember.
(b) Collection periods were in May, July and August.
(c) Collection periods were in June, July, August and September.
(d) Represents average catch per hour of electrofishing for year.

TABLE 3.3-95 YEARLY CATCH VALUES FOR EACH SPECIES OBTATINED BY SEINING AT EACH LOCATION BELOW DRESDEN. LOCK AND DAM, 1979-1981.

	- 3 - 2 - 2		Locat	ion 11		I			Locat	ion 12					i.ocat	ion 13		
	1	979a	1	980þ	1	981¢	1	979]:	980	1!	381	1	979	1	980	1	981
	No.	Z of Catch	Na.	Catch	жо.	1 of Catch	No.	% of Catch	No.	% of Catch	No.	Z of Catch	No.	% of Catch	Mo.	% of Catch	No.	% of Catch
LONGNOSE GAR		_	-	_	_		_	_	-	_	_		_	_	1	0.7		-
SKIPJACK HERRING	-	-	_	_	-	-	-	-	_	-	-	-	-	-	_	_	-	
G122ARD SHAD	-	-	9	26.5	11	13.1	-	-	2	1.6	4	2.1	9	8.5	-	_	4	2.4
CERTRAL STONEROLLER	_	-	-	_	-	_	_	-		_	-	-	-		_	-	-	-
CARP	-		-		4	4.6	_	_		-	_	-		_	1	0.7	5	2.9
EMERALD SHINER	33	84.6	18	52.9	31	35.9	26	81.3	121	95.3	148	78.7	89	84.0	126	94.0	122	7].8
GHOST SHINER	_	-	1	2.9	-	-	_	-	_	_	-	-	_	-	_	_	_	_
COMMON SHINER	_	_	_	_	-		1	3.1	_		_	-	_	-	_	_	-	_
SPOTTAIL SHINER	1	2.6	2	5.9	5	6.0		_	1	0.8	1	0.5	4	3.8	3	2.2	2	1.2
SPOTFIN SHINER	1	2.6		_	1	1.2	2	6.2		-	9	4.8	_	_	-	_	6	3.5
SAND SHINER	4	10.3	-	_	-	-	2	$6.\overline{2}$	_		-		3	2.8	l.	0.7	-	_
MIMIC SHINER	_	_	_	_	_	_	_	_	3	0.8	_	-	_	_	1	0.7	_	-
STFFLCOLOR SHINER	_		_	_	_		_	_	1	0.8	_	_	_	_	_	-	_	-
RED SHINCR	_	_		_	_	_	_	-	_	_	11	5.9	_	-	_	-	26	15.3
FATHEAD MIRNON	_	-	-	_	1	1.2	_	_	_	_	_	-	_	_	_	_	1	0.6
BEHINTHOSE MINNON	_	_	1	2,9	_	~	1	3.1	-			_		_	_			_
BULLHEAD MINNOW	-	_	ĩ	2.9	1	1.2	_	-	_	_	5	2.7		-	_	-	_	-
WHITE SUCKER	_	_	_		_		_		-		_		_	-	_	-	_	-
BLACK BULLHEAD	_	_	-	_	1	1.2	_	_	-	_	1	0.5	_	_	_			
YELLOW BULLHEAD		_	_	_	ī	1.2	_	_	_		_	_	_	-	_	_	_	_
WHITE BASS			_		-			-	_	_	1	0.5	_	-	_	-	_	-
YELLOW BASS	_	_	_	_	_	_	_	_	1	0.8	_	-	-	7	_	_	-	_
ROCK BASS	_	_	_	_	2	2.4	_	_	_			_		_	_	-	_	_
GREEN SUMFISH	_	-		_	8	9.5	_	_	-	_	2	1.1	_	_	1	0.7	3	1.8
ORANGE SPOTTED SUMFISH	_	_	_	***	4	4.8	_	_	_		ī	0.5	1	0.9	_	-	_	_
BLUEGILL	_	_	2	5.9	ż	2.4			_	_	_		_	_	_	-	_	_
LONGEAR SUNFISH	_			-	-					_	-	_	_	-	_	_	_	-
SMALLMOUTH BASS	_	-		_	_	_	_		_	_	1	0.5	_	_	_	_	_	-
LARGEMOUTH BASS	_	_	_	_	2	2.4	_	_	_		_	_	_	-	_	_	-	_
WHITE CRAPPIE	_	_	_	_	6	7.1	_	_	-	-	2	1.1	-	_	_	-	_	_
BLACK CRAPPIE	_	_			_	-	-		_	_	Ξ		_		_	_	-	
YELLOW PERCH	_	_	-	_	_		_		_	_	2	1.1	_	-	_	_	_	-
FRESHWATER DRUM	_	-	_	-	ą	4.8	-	-	_	-	_	-	_	-	_	-	1	0.6
10TAL NUMBER	39		34		84		32		127		106		106		134		170	
NUMBER OF SPECIES	4		7		16		5		5		13		5		7		9	

TABLE 3.3-95 (CONT.)

			Locat	tion 14					Locati	on 15		
	197		196	30h	198		19		198		198	31
		S of		% of		% of		% of		Y of		% of
	No.	Catch	No.	Catch	No.	Catch	No.	Catch	No.	Catch	No.	Catch
LONGNOSE GAR	_	-	_	_	-	_	-	_		-	_	_
SKIPJACK HERRING	-	-	2	5.4	1	1.1	-	<u>-</u>	_	_	1	1.5
G1ZZARD SHAD	-	-	-	-	11	11.6	3	4.5	_	-	3	4.4
CENTRAL STONEROLLER	-	-	_	-	-	_		-	4	9.5	-	-
CARP	-	-	-	_	-	_	-	-	-	_	1	1.5
EMERALD SHINER	6	50.0	27	73.0	68	71.6	63	94.C	3	7.1	29	41.2
GNOST SHIMER		-	-	_	-	-	_		_	_	_	-
COMMON SHINER	-	-			i	1.1	_	-	i	2.4	-	
SPOTTAIL SHINER	_	-	5	13,5	3	3.2	_		25	59.5	14	20.6
SPOTFIN SHINER	_	-	_	-	1	1.1	1	1.5	_		1	1.5
SAND SHINER	6	50.0	-	-	-	-				_	_	_
MIMIC SHINER	-	-	-	-		_	-	-	••	-	-	-
STEELCOLOR SHINER	_	u	_	_		-	_	_	_	_	-	
RED SHIMER	_	_	_	-	1	1.1	-	-	-	-	1	1.5
FATHEAD MINNOW	-	-	-	-	-	_	-	-	-	_	_	_
BLUNTNOSE MINNOW	-	<u>-</u>	-	-	1	i.l	-	***	2	4.8	1	1.5
RULLHEAD MINNOW	-	-	3	8.1	-	-	-	_	4	9.5	3	4.4
WHITE SUCKER	-	-	-	_	1	1.1	-		• •	_		-
BILACK BULLITEAD	_	_	-	- ,	_	-	_	-	_	-	-	_
YELLOW BULLHEAD	• _	-	_	-	-	_	-	-	-	-	-	_
WHITE DASS	_	-	-	_	_	-		-	_	-	-	_
YELLOW BASS	` -	~	-	-	-		_	_	_	-	-	
ROCK BASS	-	-	-	_	-		-	_		_	-	_
GREEN SUNFISH	_	_	-	-	3	3.2	-	-	2	4.8	1	1.5
ORANGESPOTTED SUNFISH	_		_	-	_	-	_	-	_	-	5	7.4
BLUCGILL	_	-	_		1	1.1	_	-	-	-	2	2.9
LONGEAR SURFISH	-	-	-	-	-	-	-	-	1	2.4	- '	_
SMALLMOUTH BASS	-	-	-	-	ŀ	1.1	-	-	_	-	3	4.4
LARGEMOUTH BASS	-	_		_	1	1.1	_	-	-	-	2	2.9
WHITE CRAPPIE	-	-	_	-	1	1.1	_	-	-	-	-	-
BLACK CRAPPIE	-	_	_	-	-	-	_	-	-	_	2	2.9
YELLOW PERCH	_	-	~	-	_	-	_	-	_	-		-
FRESHWATER DRUM		_	-	-	-	_	-	-	-	-	-	-
TOTAL NUMBER	12		37		95	•	67		42		68	
NUMBER OF SPECIES	2		4		14		3		8		15	

⁽a) Collection periods were in May, June, August and November.
(b) Collection periods were in May, July, and August.
(c) Collection periods were in June, July, August and September.

4.0 IMPINGEMENT STUDY

4.1 STUDY AREA DESCRIPTION

During indirect open cycle operation, cooling water for Units 2 and 3 of Dresden Station is taken in through an intake canal that adjoins the Kankakee River (Figure 4.1-1). The canal is approximately 2400-ft long, 56-ft wide and 13-ft deep. Water from both the Kankakee and Des PlainesiRivers is drawn into the canal in varying proportions. The water flows from the canal to an intake forebay and then through a single cribhouse where debris and fish are collected (impinged) on revolving (traveling) screens before the water enters the station. The screens are cleaned by a backflushing procedure and the accumulated material is washed into a sluiceway that transports the material to a collection (trash) basket constructed of 0.375-in stainless steel mesh. The fish from the basket serve as the basis for determining the number and biomass of fish impinged at Units 2/3 intake.

4.2 INTRODUCTION

Impingement studies were conducted at Dresden Station in 1976, 1977 and 1978 which provided information on the numbers and biomass of fish impinged on the station's intake screens during closed cycle operation (CECo 1977, Patulski 1978 and 1979). These studies also provided substantial evidence regarding the major source of impinged fish, that being the Dresden cooling pond. During the summer of 1981, CECo was granted temporary permission to operate the station in an indirect open cycle mode which provided an opportunity to determine the quantity of fish impinged on Units 2/3 intake screens directly from the river system.

The 1981 impingement study at Dresden Station had the following specific objectives: (1) to document the species composition, numbers and biomass of fish impinged on Units 2/3 intake screens; (2) to determine the temporal changes in impingement rate; (3) to determine the length distribution of the dominant fishes collected from the intake screens; and (4) to estimate the total numbers and biomass of fish impinged during the period of open cycle operation.

4.3 FIELD AND ANALYTICAL PROCEDURES

4.3.1 Field Procedures

Impinged fish were collected from the intake screens of Units 2/3 by concentrating screen washings over a 24-hour period. The impingement study was conducted over a four-month period from 16 June through 29 September and encompassed 29 sampling dates. Samples were collected twice each week on Tuesdays and Fridays. The sample period began at approximately 0900 hours on Monday and Thursday of each week. Immediately before each sampling period, the traveling screens were manually backflushed by station personnel to remove all fish and debris and a clean trash basket was set in place. At the end of each 24-hour sample period, the screens were again backflushed to remove all impinged fish and the trash basket was emptied. The fish were then separated from the debris and processed. Fish that were obviously dead longer than 24 hours were removed from the sample and processed separately as to species and number. The time of day the basket was put in place was recorded on a log sheet by station personnel.

All fish were counted, measured for total length to the nearest millimeter and weighed in grams. Species (except gizzard shad) having more than 30 individuals in a sample were subsampled for length and weight according to the following procedure. A minimum of 30 individuals were selected based on an interval calculated by dividing the total number collected by 30. The remaining specimens were counted and batch weighed. For gizzard shad, when 100 or fewer specimens were collected, all individuals were measured to the nearest millimeter and weighed to the nearest gram. For samples with greater than 100 individuals, only the first 30 and the last 30 specimens were measured and weighed. The remaining fish were then batched weighed and generally counted. When samples were excessively large (>1000 fish) an average weight was calculated for the 60 weighed specimens and divided into the batch weight to obtain an estimate of the batch number. Fish with frayed or missing caudal fins were not measured for length.

All measured fish were examined for disease, external parasites, and physical abnormalities. Fish that were not identified in the field were preserved in formalin, labeled, and returned to the laboratory for processing. Scientific and common names of fish followed Robins et al. (1980).

4.3.2 <u>Laboratory Procedures</u>

Some fish were returned to the laboratory for analysis. Measuring, counting, and subsampling procedures were the same as those described above. A voucher collection was maintained at EAI's Midwest Regional Office.

4.3.3 Data Handling and Analysis

Most impingement data was computer processed using appropriate quality; control procedures and documented, verified programs that are part of EAI's "FRESH" software package. Data summaries were prepared in table formats approved by CECo. Daily impingement results were reported as total number, total weight, average weight, and length range for each species. Monthly summaries of the data were also prepared. It was assumed that the quantity

of fish impinged on non-sampling days was equal to the quantity observed on dates during the month that sampling was completed. Monthly estimates were calculated using the following formula:

Estimated number (or weight) = $\frac{\Sigma \text{ Number (or weight)}}{\text{per 24 hr}} \times \text{Days in month}$ impinged per month $\frac{\Sigma \text{ Sampling dates per month}}{\text{Sampling dates per month}}$

Length-frequency distribution of dominant species (>1 percent of total number for combined dates) was determined for each sampling date. When fish were subsampled, the lengths of those individuals of a species measured were used to determine the length distribution of all fish of that species collected per date.

4.3.4 Physicochemical Measurements

Water temperature and dissolved oxygen (DO) measurements were taken at approximately 0830 hours each collection day at the upper end of the intake forebay. Measurements were taken at the surface, at subsequent 1-m depth intervals and at the bottom using a Hydrolab Temperature/DO meter (Model TDO-2) or a Hydrolab Water Quality Measurement System. Instrument calibration was performed in the field just prior to taking field measurements (see Section 2.2.2). Calibration test data for each sampling data are reported in Appendix F. Percent oxygen saturation was determined from the relationship of DO in the water and the water temperature.

4.4 RESULTS AND DISCUSSION

4.4.1 Station Operating Status and Cooling Water Usage

Units 2 and 3 were operating on 100 of the 108 days during the 15 June through 30 September 1981 period that Dresden Station was operated in an indirect open cycle mode (Table 4.4.-1). On the remaining 8 days, only one of the two units was operating. The output of Unit 2 ranged from 0 to 823 MWe and averaged 684 MWe or 82 percent of capacity. Unit 3 output ranged from 0 to 804 MWe and averaged 613 MWe or 74 percent of capacity. Five or six circulating water pumps were operating during the 15 June - 30 September study period, supplying 1,749 and 2,099 $\rm ft^3/sec$ (cfs) of water for condenser cooling, respectively. The average intake flow (exclusive of service water usage) at Units 2/3 intake was 1,979 cfs.

The flow of the Kankakee River ranged from 2,640 to 17,500 cfs during the study with the highest flows occurring in June and the lowest flows in September (Table 4.4-1). Kankakee River flow always exceeded the station cooling water flow and on 82 of the 108 days (76 percent of the time) the river flow was at least twice the station intake flow. Based on these differences, it is reasonable to assume that the Kankakee River supplied all or most of the daily cooling water supply for the station. Supportive evidence for this assumption is provided in the physicochemical and plankton data obtained monthly from the intake forebay (Section 2.0 and Brinker 1982). Flows in the Kankakee and Illinois Rivers were exceptionally high for the months of June through September 1981. Compared to the average flows for the same months during the previous 10 yr period (1971-1980), the flows in the Kankakee River in 1981 were twice or more than the 10 yr averages and in the Illinois River they were 1.2 to 1.8 fold higher in 1981 (Table 4.4-2). The average monthly flows in the Des Plaines River in 1981 were comparable to the previous 10 yr average except in June, which was higher in 1981.

4.4.2 Composition of Impinged Fish

A total of 59 fish taxa, comprising 54 species, 3 genera, 1 family and 1 hybrid, were removed from the trash basket at Units 2/3 intake over 29 sampling dates between 16 June and 29 September 1981 (Table 4.4-3). These taxa were represented by 59,190 fish weighing 705 kg (1,554 lbs). The minnow (Cyprinidae), sucker (Catostomidae) and sunfish (Centrarchidae) families were represented by the greatest number of species; 13, 10 and 9 respectively. Carp and gizzard shad were the dominant species, accounting for 46.5 and 44.9 percent of the total number, respectively. Three other species composed \geq 1 percent of the total number: channel catfish, white crappie and freshwater drum. The order of dominance by weight was: gizzard shad (46.5 percent), carp (26.2 percent), channel catfish (6.0 percent), and shorthead redhorse (5.7 percent). Five other species composed \geq 1 percent of the total weight: white crappie, smallmouth buffalo, river carpsucker, freshwater drum and black crappie.

Three non-indigenous species to the Illinois, Kankakee and Des Plaines Rivers (Smith 1979) were collected during the study: striped bass, threadfin shad and rainbow smelt. The first two species probably originated from Dresden cooling pond where they were stocked in 1980 and 1981. The stocking program

is part of a research project, conducted by Southern Illinois University, and funded by CECo and the Electric Power Research Institute to investigate the sport fishery potential of power plant cooling reservoirs. The rainbow smelt undoubtedly originated from Lake Michigan.

Fish found in the impingement samples that were obviously dead longer than 24 hours were excluded from the impingement numbers. A noticeable percentage of the counted fish were in a deteriorated condition, particularly channel catfish, and a portion of these fish could possibly have been dead prior to being impinged. Because there was no conclusive means of determining the length of time these fish were dead, they were included in the impingement counts.

4.4.3 Physicochemical Measurements

Intake temperatures ranged from I7.4 to 27.5 C during the 16 June through 29 September sampling period (Tables 4.4-4 through 4.4-7). On most dates (22) temperatures were within the 21 to 25 C range. The temperature was generally homogeneous within the water column with only an occasional difference from surface to bottom. Temperatures generally varied less than 2 C between sampling dates and only twice varied more than 3 C. The temporal variability in temperature was undoubtedly related to a number of seasonal factors, although the major factor appeared to be river flow. Temperatures generally increased as the flow of the Kankakee River receded and, contrastingly, decreased with increased river flow. Temperatures were generally similar between the intake and Kankakee River but lower than in the Des Plaines River; the latter was confirmed by comparison of temperatures on the four sampling dates for the water chemistry and plankton studies (CECo 1982) and on four additional dates that impingement and fisheries studies coincided (Section 3.3.3.2).

Dissolved oxygen concentration (DO) at the intake ranged from 5.5 to 9.1 mg/l but generally was within the 6.6 to 8.0 mg/l range (Tables 4.4-4 through 4.4-7). DO concentration was generally homogeneous within the water column. Between most sampling dates the variability in DO was less than 1 mg/l. DO at the intake was typically greater than in the Des Plaines River but lower than in the Kankakee River on the eight dates that DO was measured in the three water bodies.

Oxygen saturation ranged from 56 to 95 percent and typically was within the 75 to 90 percent range (Tables 4.4-4 through 4.4-7). Oxygen saturation generally varied \leq 10 percent between most sampling dates.

4.4.4 Temporal Abundance of Fish

Over 55 percent (32,859 fish) of the fish impinged during the study were taken in July (Tables 4.4-8 through 4.4-11). The lowest number of fish (4,451) was impinged in June. The initial collections in mid-June ranged from 637 to 688 fish/date and consisted primarily of gizzard shad (Appendix E). By late June the impingement number doubled and continued to increase on each date through mid-July when the highest number (6,026 fish) was collected on 14 July. The consistent increase was reflected principally in the number

of carp collected on each date. Gizzard shad numbers remained relatively similar until 14 July when the number increased substantially. Impingement numbers slowly declined from mid-July through early August (2,355 fish were collected on 7 August) followed by a further, more rapid, decline until mid-August. The decline in impingement during this period was most pronounced for carp. Gizzard shad impingement was variable but generally greater than in June or early July. There were subsequent periodic pulses or increases in numbers impinged (1500-2500 fish) followed by sharp declines (300-600 fish). This pattern was observed from mid-August through September and was reflected in the numbers of gizzard shad collected on each date. Carp numbers were low throughout this period, ranging from 2 to 79 fish/date.

The temporal differences in fish impingement were associated with the occurrence and abundance of small, young-of-the-year (YOY) fish in the adjacent river system and their apparent vulnerability to impingement. Most fish collected during the study were small, young fish. The sharp increases in impingement in late June that continued through mid-July were associated with greater numbers of small fish in the collections. A detailed discussion of the length-frequency distribution of five dominant species is presented in Section 4.4.5.

Other possible variables associated with impingement were also examined. including river flow, intake flow, temperature and DO. None were shown to be closely related to impingement. Impingement increased when Kankakee River flow decreased and vice versa on 18 of 28 dates, although there were substantial inconsistencies. In addition, the relationship was most often observed in July and early August when river flows typically decline and, correspondingly, when young fish are most abundant in the river. Intake flows varied little during the study period whereas impingement numbers were quite variable. The station was operating with either five or six circulating pumps throughout the study period and changes in the number of pumps operating occurred on only nine dates. There was no consistent pattern observed between changes in pumping operation and impingement. Temperatures and DO concentrations at the intake were generally stable with only subtle changes (<2 C and <1 mg/l DO) ocurring during most of the study period. No extreme values were measured that would cause impingement levels to change dramatically. There were no consistent changes in impingement numbers on those dates when the greatest changes in temperature and DO occurred.

4.4.5 Length Distribution of Selected Species

Analysis of the length frequency distribution of fish was performed for the five dominant species: gizzard shad, carp, channel catfish, white crappie and freshwater drum. These fish composed 96.7 percent of the total impingement. Most of the fish impinged at Units 2/3 intake were small (Tables 4.4-12 through 4.4-16). Although detailed analysis was not performed for the other species, empirical examination of the data showed that most of these fish were small in size (Appendix E).

Impinged carp ranged from 21 to 565 mm in length over the study period but most were less than 110 mm and were probably YOY fish (Table 4.4-12). The mean length of 682 measured carp was 83.4 mm. The greatest number were

within the 50 to 79.9 mm length interval. Few fish larger than 140 mm were collected. From the initial collections in mid-June through mid-July most carp impinged were 50 to 80 mm in length. By mid-July fish 80 to 110 mm in length became more evident in the collections and by late July they were comparable in abundance to fish 50 to 80 mm in length. Carp abundance declined sharply in late August and remained low through September. During this period, 50 to 110 mm fish remained dominant although 110 to 140 mm fish constituted a notable proportion of the total number.

Gizzard shad ranged from 16 to 390 mm in length over the study period with most fish ranging from 50 to 140 mm (Table 4.4-13). The mean length of 1,741 measured fish was 127 mm. The greatest number of fish were within the 50 to 79.9 length interval. Although small YOY fish dominated the total impingement collection, larger fish were well represented throughout the study period. Most gizzard shad collected in June were > 110 mm and the greatest number were 140 to 200 mm in length. In the first half of July, most fish impinged were 110 to 140 mm in length. By mid-July, small fish, mostly 50 to 80 mm in length, became abundant in the collections. They were the dominant size group through early August, and along with fish of 80 to 110 mm length, comprised the dominant groups through September.

Channel catfish ranged from 45 to 415 mm in length over the study period (Table 4.4-14). The mean length of 726 measured fish was 130.1 mm. The greatest number of fish were within the 110 to 139.9 mm length interval. Larger fish (\geq 170 mm) were commonly collected throughout the study period. Fish between $\overline{80}$ and 140 mm were dominant in the collections throughout the study period although smaller fish were well represented from late August through September.

White crappie ranged from 44 to 245 mm in length over the study period with most fish ranging from 110 to 200 mm (Table 4.4-15). The mean length of 711 measured fish was 140.9 mm. Only a small proportion of fish \geq 200 mm or < 80 mm were collected. White crappie 80 to 110 mm in length were dominant in the June collections; thereafter, most fish were larger with the greatest number within the 140 to 169.9 mm length interval.

Freshwater drum ranged from 40 to 462 mm in length over the study period with most fish ranging from 50 to 110 mm (Table 4.4-16). The mean length of 416 measured fish was 89.0 mm. Only a small proportion of fish \geq 140 mm or < 50 mm were collected. Prior to mid-July most fish impinged were 50 to 80 mm in length; thereafter, 50 to 110 mm length fish made up most of the collections with periodic shifts toward the upper and lower ends of the length interval.

4.4.6 <u>Incidence of Physical Abnormalities</u>, <u>Disease and Parasites</u>

Only six fish, representing four species, exhibited some form of abnormality or parasites (Table 4.4-17). The exceptionally low number was probably related to two factors: difficulty in identifying fish disorders because of the deteriorated and mutilated condition of many fish; and the low incidence of abnormalities, disease and parasites typically associated with young fish (young fish constituted most of the impingement).

4.4.7 <u>Estimation of Impingement Losses</u>

An estimated 225,879 fish weighing 2,421 kg (5,344 lbs) were impinged at Units 2/3 intake during the 15 June through 30 September 1981 period when Dresden Station was operated in an indirect open cycle mode (Table 4.4-18). Numerically, the dominant species were carp (48.1 percent) and gizzard shad (44.0 percent). Other species representing \geq 1 percent of the total number were channel catfish, white crappie and freshwater drum. By weight, the dominant species were gizzard shad (48.7 percent) and carp (29.0 percent). Channel catfish, shorthead redhorse, white crappie and black crappie also composed \geq 1 percent of the estimated weight of fish impinged.

The largest impingement occurred in July (56.4 percent) and the smallest in June (6.3 percent). Impingement in August and September was comparable at 19.5 and 17.8 percent, respectively, of the total impingement. Gizzard shad was the major species impinged in all months except July when carp was dominant.

The 1981 estimated impingement was compared to previous years estimates for the same time period (15 June to 30 September) to evaluate impingement losses during varying station operational modes. Species that were dominant in one or more years were selected for evaluation. Impingement studies were conducted at Dresden Station in 1976, 1977 and 1978. The 1976 impingement estimates were excluded from the yearly comparisons because the method of calculating the estimates was uncomparable to other years (volumetric basis instead of time) and the station operating mode varied during the summer months between direct open, indirect open and closed cycles. The smallest estimated impingement occurred in 1981 when the station was operated in an indirect open cycle mode (Table 4.4-19). The largest impingement occurred in 1977 when the station operated under the variable blowdown scheme. It should be pointed out that despite the large estimated losses, the 1977 estimate included only the months of August and September (questionable data precluded estimates for June and July). Impingement in 1978 under variable blowdown operation was smaller than in 1977 but larger than in 1981 under indirect open cycle operation.

Gizzard shad represented 96 to 99 percent of the total impingement in 1977 and 1978, with the largest number impinged in 1977. The relative abundance of gizzard shad in the 1981 impingement was also high but much lower than in 1977 and 1978. The major difference in impingement between 1981 and previous years was the number of carp impinged. In the two previous years carp constituted only a small proportion (0.1 percent or less) of the total impingement whereas in 1981 carp was the major species impinged (48 percent of the total impingement estimate). The unusually large number of impinged carp in 1981 probably resulted from exceptional recruitment of YOY fish in the river system associated with high spring and summer flows in the Kankakee River. Most carp impinged in 1981 were small (Table 4.4-12) and represented YOY fish. Other species impinged in greater numbers in 1981 than in other years were channel catfish and white crappie. For the remaining four species, their relative abundance was not related to any particular operating mode. Impingement of skipjack herring in 1977 was noticeably larger than in 1978 and 1981 whereas emerald shiners and freshwater drum

showed a higher impingement in 1978 and 1981. Impingement of bluegill varied only slightly in all three years.

The comparison of fish impingement under different station operational modes was based on one or two year's data for each mode of operation. Because of natural variability in fish populations from year to year, impingement can also be expected to vary from year to year; this probably accounted for some of the differences in impingement among the three years of study. This was particularly evident for carp which was only abundant in the 1981 impingement. Nonetheless, these data provide a measure of the differences in impingement attributable to station operational mode. Impingement losses were smaller when operating indirect open cycle rather than under the variable blowdown scheme, although the difference was quite variable. The concomitant question regarding the source of impinged fish under each operating mode must also be considered. Under variable blowdown operation, most impinged fish apparently originate from the cooling pond (Patulski 1979) whereas with indirect open cycle operation, the source of impinged fish is the river system. A study conducted at the Dresden cooling pond spillway in 1978 (Patulski 1979) showed that escapement of fish from the pond during variable blowdown operation was high and substantially greater than the loss of fish from impingement. The spillway study was again conducted in 1981 (Lewis and Heidinger 1982) that included the summer period when the station operated indirect open cycle. The estimated number of fish that escaped from the cooling pond during the summer was much lower than in 1978 but was comparable to the number impinged at the intake of Units 2 and 3. Unlike variable blowdown operation when large numbers of fish that escape from the pond are impinged. under indirect open cycle mode many of these fish are recruited to the river system, thereby minimizing the impact of impingement losses on the fish population in the adjoining rivers.

4.5 SUMMARY AND CONCLUSIONS

- 1. Carp and gizzard shad accounted for 91 percent of the fish collected from impingement samples from 15 June through 30 September 1981. The highest impingement rate occurred in July and lowest in June. Temporal variability in impingement was considerable and was reflected in the collections of carp and gizzard shad.
- 2. Most fish impinged were small, young fish.
- Impingement was not closely related to the river flows, intake flows, temperature or dissolved oxygen concentrations experienced during the sampling period.
- 4. An estimated 225,879 fish were impinged during indirect open cycle operation at Dresden Station from 15 June through 30 September 1981.
- A comparison of impingement between different operating modes showed lower numbers of fish impinged during indirect open cycle than variable blowdown operation.
- 6. The major difference in abundance of fish impinged between the different operating modes was observed for carp. The high impingement of carp during indirect open cycle operation probably resulted from exceptional recruitement of the 1981 year class associated with unusually high Kankakee River flows.

4.6 REFERENCES

- Brinker, S. 1982. Dresden Nuclear Station water quality study in the Dresden Cooling Pond during indirect open cycle operation, June 15 September 1981. Unpublished.
- Commonwealth Edison Company. 1977. Bresden Generating Station cooling water intake impact report. Commonwealth Edison Co., Chicago. 212 pp.
- Lewis, W. and R. Heidinger. 1982. Escapement of juvenile and adult fishes over Dresden Pond spillway in the sport fishery potential of power plant cooling reservoirs. Research Proj. 1743 An. Rept., Fish Res. Lab., Southern Ill. Univ., Carbondale. Unpublished.
- Patulski, D. 1978. Fisheries studies at Dresden Station, 1971-1978. Report by Nalco Environmental Sciences to Commonwealth Edison Company, Chicago. 294 pp.
- . 1979. Dresden Station spillway and impingement study, 1978 in Fisheries studies at Dresden Station, 1978. Chapter 1. 99 pp.
- Robins, C.R. (Chairman). 1980. A list of common and scientific names of fishes from the United States and Canada. Amer. Fish. Soc. Spec. Pub. No. 12. 174 pp.
- Smith, P.W. 1979. The fishes of Illinois. Univ. of Illinois Press, Urbana, Illinois. 314 pp.

TABLE 4.4-1 DAILY OPERATIONAL STATUS AT UNITS 2 AND 3, DRESDEN STATION, AND FLOW DATA FOR ILLINOIS, KANKAKEE AND DES PLAINES RIVERS, 15 JUNE - 30 SEPTEMBER 1981.

<u>Date</u>	Unit 2 (MWe)	Unit 3 (MWe)	Circu- lating Water Pumps	Intake ^a Water Flow (cfs)	Illinois ^b River Flow (cfs)	Kankakee ^C & River Flow (cfs)	Des Plaines ^d River Flow (cfs)
June 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	280 557 723 679 749 623 682 680 776 780 766 612 691 646 478 267	784 789 745 804 753 798 702 707 796 726 753 785 648 419 583 675	56565555555555555	1,749 1,749 2,099 1,749 1,749 1,749 1,749 1,749 1,749 1,749 1,749 1,749 1,749 1,749	52,000 35,662 25,942 21,952 20,360 17,760 15,960 18,870 26,200 23,300 20,290 20,290 21,420 20,030 17,770 15,440	17,500 16,400 15,800 14,500 13,200 12,200 11,500 12,500 14,100 14,500 14,800 14,800 14,800 14,200 13,100 11,700 10,200	34,500 19,262 10,142 7,452 7,160 5,560 4,460 6,370 12,100 8,800 5,490 5,490 7,220 6,930 6,070 5,240
July 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	0 193 524 662 730 721 728 729 730 729 531 738 757 795 62 149 510 638 738 798 798 745 725	775 775 769 756 718 769 759 755 451 714 744 732 733 729 728 726 712 510 657 736 724 671 691 667 665	5565566666666666666666666	1,749 1,749 2,099 1,749 2,099	13,440 13,440 13,440 10,920 10,920 10,770 10,770 10,770 8,520 7,050 7,710 8,370 14,760 8,520 13,560 8,370 7,050 7,050 6,390 10,770 11,970 13,100 13,100 10,770 9,570	9,000 8,100 7,550 7,050 6,760 6,890 7,260 6,800 5,990 5,360 4,670 4,440 4,140 3,920 3,770 3,660 3,480 3,520 6,360 7,890 8,180 7,300 6,520	4,440 5,340 4,190 3,870 4,160 3,880 3,510 3,970 2,630 1,690 2,850 3,700 10,320 4,380 9,640 4,600 3,390 3,570 2,870 4,410 4,080 4,530 4,920 3,470 3,050

TABLE 4.4-1 (CONT.)

<u>Date</u>	Unit 2 (MWe)	Unit 3 (MWe)	Circu⊸ lating Water Pumps	Intake ^a Water Flow (cfs)	Illinois ^b River Flow (cfs)	Kankakee ^C River Flow (cfs)	Des Plaines ^d River Flow (cfs)
July 26	809	725	6	2,099	12,240	6,520	5,720
27	725	716 715	6	2,099	11,900	7,010	4,890
28 29	808 726	711	6 6	2,099 2,099	26,770 26,770	12,200 15,900	14,570
30	810	705	6 5	1,749	24,210	14,900	10,870 9,310
31	819	705	6	2,099	20,480	13,250	7,230
Aug. 1	818	656	6	2,099	17,020	10,970	6,050
2 2	635	703	6	2,099	13,370	9,080	4,290
3	796	691	6	2,099	21,490	8,310	13,180
4	800	687	6	2,099	16,450	7,550	8,900
5	817	68 4	6	2,099	12,240	6,930	5,310
6 7	821	680	6	2,099	9,450	7,010	2,440
7	820	678	6	2,099	11,970	7,470	4,500
8 9	820	666	6 6	2,099	11,970	8,010	3,960
9	724	674	6	2,099	11,970	7,890	4,080
10	774	669	6	2,099	11,970	6,850	5,120
11	756	668	6 6 6	2,099	10,770	5,790	4,980
12	808	664	6	2,099	10,170	5,160	5,010
13	511	658	6 6 6 6	2,099	8,250	4,820	3,430
14	327	656	6	2,099	9,570	4,440	5,130
15	20	654	6	2,099	9,840	4,740	5,100
16	207	652	6	2,099	11,760	4,860	6,900
17	497	650		2,099	12,960	5,130	7,830
18	633	648	6	2,099	8,370	5,280	3,090
19	747	646 641	6	2,099	9,840	4,930 4,250	4,910
20	801	641	6	2,099	6,810	4,250	2,560
21	814	613 641	6 6	2,099	7,980	3,590	4,390
22 23	815 717	672	6	2,099	5,580	3,240	2,340
23	806	629 .	6	2,099	5,580 5,580	2,290	2,660
25	782	624	6	2,099 2,099	7,050	2,760 2,640	2,820
26	746	622	6	2,099	8,370	2,640	4,410 5,730
27	81.4	621	6	2,099	9,670	3,340	6,330
28	817	619	Ğ	2,099	13,100	4,900	8,200
29	820	619	š	2,099	13,440	6,310	7,130
30	762	616	6 6 6	2,099	13,440	6,890	6,550
31.	816	612	6	2,099	17,960	6,640	11,320
Sept. 1	813	595	6	2,099	14,570	8,010	6,560
2	818	0	6 6 6	2,099	15,890	9,410	6,480
3	804	0	6	2,099	17,020	9,990	7,030
4	800	113	6	2,099	17,090	9,550	7,540
5	809	582	6	2,099	15,890	8,480	7,410

TABLE 4.4-1 (CONT.)

<u>Date</u> Sept. 6 7 8 9	Unit 2 (MWe) 638 784 776	Unit 3 (MWe) 609 561 608 607	Circung Vater Pumps 6666666555555555555555555555555555555	Intake ^a Water Flow (cfs) 2,099 2,099 2,099	Illinois ^b River Flow (cfs) 13,560 12,240 9,720	Kankakee ^C River Flow (cfs) 6,970 5,710 5,010	Des Plaines ^d River Flow (cfs) 6,590 6,530 4,710
10	784 821	603	<u>د</u>	2,099	11,040 9,570	4,590 4,330	6,450 5,240
11	823	599	6	2,099 2,099	9,570	3,990	5,580
12	821	593	6	2,099	9,570	3,700	5,870
13	782	588	6	2,099	8,370	3,450	4,920
14	808	574	š	1,749	9,570	3,300	6,270
15	812	26	5	1,749	7,050	3,100	3,950
16	813	0	5	1,749	8,370	2,920	5,450
17	815	0	5	1,749	8,370	2,820	5,550
18	818	0	5	1,749	8,370	2,990	5,380
. 19	763	0	5	1,749	9,570	3,810	5,760
20	750	340	5	1,749	9,570	4,250	5,320
21	779	586	5	1,749	8,970	3,590	5,380
22	0	595	5	1,749	7,300	3,240	4,060
23	149	586	5	1,749	5,580	2,290	3,290
24	579	585	5	1,749	6,180	3,410	2,770
25	717	583	5	1,749	6,780	3,310	3,470
26	800	115	5	1,749	7,050	3,380	3,670
27	751 210	574	ž	1,749	6,780	3,700	3,080
28 20	810	581 566	5	1,749	7,050	4,550	2,500
29 30	819 822	566 562	5	1,749 1,749	9,450 9,570	5,010 7,220	4,440 2,350
Average	684	613		1,979			

⁽a) Intake flow does not include service water usage which the station, during normal operation, has four pumps (each at 15,000 gpm or 33 cfs capacity) operating, for a total flow of 132 cfs.
(b) Data from Gaging Station, Dresden Island Lock and Dam.
(c) Data from Gaging Station, Wilmington Dam.
(d) Based on the difference in flow between Illinois and Kankakee Rivers.

TABLE 4.4-2 MEAN MONTHLY FLOW DATA FOR THE KANKAKEE, DES PLAINES AND ILLINOIS RIVERS.

			Mean Rive	r Flow (cfs)
	<u>Year</u>	June	July	August	September
Kankakee River	1971-1980	6,388	2,661	2,232	2,492
	1981	13,813 ⁸	7,155	5,656	4,869
Des Plaines River	1971-1980	6,237	5,081	5, 6 66	5,690
	1981	9,515 ^a	5,176	5,440	5,120
Illinois Ríver	1971-1980	12,625	7,742	7,898	8,182
	1981	23,328 ^ā	12,331	11,096	9,989

⁽a) Mean is representative of data from 15-30 June.

TABLE 4.4-3 TOTAL NUMBER AND WEIGHT OF ALL FISH TAXA COLLECTED DURING IMPINGEMENT SAMPLING AT THE DRESDEN STATION, 15 JUNE-30 SEPTEMBER 1981.

Scientific Name	Common Name	Total No.	<u>"</u>	Total Weight (g)	œ,
				mergare (g)	
TYPRINUS CARPIO OROSOMA CEPEDIANUM CTALURUS PUNCTATUS GMOXIS ANNULARIS PLOBINOTUS GRUNNIENS OTROPIS ATHERINOIDES CTALURUS MELAS OMOXIS NIGROMACULATUS OTURUS FLAYUS OXOSTOMA MACROLEPIDOTUM ARPOIDES SP. EPOMIS MACROCHIRUS SOX LUCIUS ERCOPSIS OMISCOMAYOUS YLODICTUS OLIVARIS OTEMIEONUS ORYSOLEUCAS EPOMIS HUMILIS OROME MISSISSIPPIENSIS	CARP	27550	45.5	184471	26.2
OROSOMA CEPEDIANUM	GIZZARD SHAD	26559	44.9	327555	46.5
CTALURUS PUNCTATUS	CHANNEL CATFISH	1736	2.9	42 398	6.0
GMOXIS ANNULARIS	WHITE CRAPPIE	828	1.4	27396	3.9
PLOBINOTUS GRUNNIENS	FRESHWATER DRUM	596	1.0	8051	1.1
OTROPIS ATHERIMOIDES	EMERALD SHINER	406	0.7	-	
CTALLIRUS MELAS	BLACK BIG LHEAD	242	0.4	3011	0.4
OMOXIS WIGROMACULATUS	BLACK CRAPPIE	218	0.4	71 39	1.0
OTHERS FLAVIS	STONECAT	163	0.3	4090	0.6
DXDSTOMA MACROLEPIDOTIM	SHOOTHFAD REDWORSE	155	0.3	40509	5.7
APPNINES SP	CADDSINGED SO	125	0.2	1266	0.2
FORM'S MACOULATORS	DI HEGTI I	153	1.0		
SUA , LLETTIC	NAATUEN NIVE	100		18 47	0.3
CDCUCCIC UNICCUMPACIA C	TROUT BERCH	28	0.1	3739	0.5
MICOLOTUS OF THEOLOG	TRUUT-YEXUN	54	0.1	299	<0.3
TOURIGIUS OLIVARIS	FLAIMEAU CAIFISH	44	0.1	2105	0.3
OCTEMICONUS CRYSOLEUGAS EPOMIS HUMILIS ORGNE MISSISSIPPIENSIS ARPOIDES CARPIG EPOMIS CYANELLUS CTIOBUS BUBALUS ORONE SAXATILIS IMEPHALES VIGILAX ARPOIDES CYPRINUS ICROPTERUS SALMOIDES LOSA CHRYSOCHLORIS IMEPHALES NOTATUS GMOXIS SP.	GOLDEN SHINER	41	0.1	-	_
EPOMIS HUMILIS	ORANGESPOTTED SUNFISH	37	0.1	237	<0.3
ORONE MISSISSIPPIENSIS	YELLOW BASS	28	<0.1	1296	0.2
ARPOIDES CARPIC	RIVER CARPSUCKER	28	<0.1	12684	1.8
EPOMIS CYANELLUS	GREEN SUNFISH	21	<0.1	243	<0.1
CTIOBUS BUBALUS	SMALLMOUTH BUFFALD	18	<0.1	23060	3.
ORONE SAXATILIS	STRIPED BASS	18	<0.1	502	0.1
IMEPHALES VIGILAX	BULL HEAD MINNOW	16	<0.1	_	-
ARPDIDES CYPRINES	OILTS I RACK	15	<0.1	2159	0.
ICOOPTERUS SALMOIDES	LADGEMOUTH SASS	15	<0.1	471	0.
ASA CHOVSOCHIODES	CAIDIVEA REGGING	17	∠n 1	2.45	
MEDUALES MOTITIE	SKIPJACK HERRING SLUNTNOSE MINNOW CRAPPIE SP. SMALLMOUTH BASS BOUETN	13	40.1	246	<0.
THE THE CO	SEURINOSE VINNON	1.5	40.1	4	<0.1
<u> </u>	CMAPPLE SP.	12	(0.1 (0.1 (0.1		- .
ICROPTERUS DOLOMIEUI MIA CALVA MIA CALVA OTROPIS GYRINUS OTROPIS SPILOPTERUS OTROPIS SUTPENSIS	SWAFFWOOLK RASS	ΙΪ		•	<0.1
TIA CALYA	BUNFIN	9 8 7 7 7	<0.1	193	<0.1
DIDRUS GYRINUS	TADPOLE MADTOM	8	<0.1	33	<0
OTROPIS SPILOPTERUS	SPOTFIN SHINER	7	<0.1	-	-
ALMALIA COLUCIONA	RED SHINER	7	<0.1	4	<0.0
OXOSTOMA ERYTHRURUM	GOLDEN REDHORSE	7	<0.1	886	J.,
MBEOPLITES RUPESTRIS	ROCK BASS	7 6 5 4	<0.1	128	<0.3
IRONE CHRYSDPS	WHITE BASS	б	<0.1	781	0.1
IRONE CHRYSDPS LODON ALOSOIDES	GOLDEYE	Š	<0.1	3725	ă.
DROSOMA PETENENSE	THREADFIN SHAD	4	<0.1	51	<0.1
ARRASIUS AURATUS	GDLDFISH	à	<0.1	613	0.3
OXOSTOMA ANISURUM	SILVER REDHORSE	4	<0.1	1527	
	LONGNOSE GAR	4 4 3 3			0.
	COFFY AUUR	ž	<0.1	336	<0.1
INCTICUS ATROMACOLATOS	CREEK CHUB	3	<0.1	.8	<0.1
	SLUNTNOSE MINNOW CRAPPIE SP. SMALLMOUTH BASS BOWFIN TAOPOLE MADTOM SPOTFIN SHINER REIL SHINER GOLDEN REDHORSE ROCK BASS WHITE BASS GOLDEYE THREADFIN SHAD GOLDFISH SILVER REDHORSE LONGNOSE GAR CREEK CHUB REDHORSE SP. GRASS PICKEREL MINNOWS CARP X GOLDFISH	3 2	<0.1	25	<0.1
OX AMERICANUS VERMICULATUS	GRASS PICKEREL	5	<0.1	36	<0.1
/PRINIDAE	MINNOWS	2	<0.1	•	-
	CARP X GOLDFISH	2	<0.1	1040	0.1
OCCMIS BIGUTTATUŞ	HORNYHEAD CHUB	2	<0.1	134	<0.1
TROPIS HUDSONIUS	SPOTTAIL SHINER	2	<0.1	-	_
HÉMACOBIUS MIRABILIS	SUCKERMOUTH MINNOW	2	<û.l	_	-
TOSTOMUS COMMERSONI	WHITE SUCKER	2	<0.1	15	<0.0
TALURUS NATALIS	YELLOW BULLHEAD	2	<0.1	14	<0.
BIDESTHES SECCULUS	SROOK SILVERSIDE	2	<0.1	5	<0.3
PCMIS GIBBOSUS	PUMPKINSEED	. 2	<0.1	5 8	<0.1
MERUS MORDAX	RAINBOW SMELT	1	<0.1		
TROPIS CORNUTUS	COMMON SHINER	1		5	0. 3
			<0.1	-	.,,
APPOIDES VELIFER	HIGHEIN CARPSUCKER	1	<0.1	2	<0.1
TIOBUS CYPRINELLUS	BIGMDUTH BUFFALO	. 1	<0.1	155	<0.1
INYTREMA MELANOPS	SPOTTED SUCKER	<u>*</u>	<0.1	293	<0.1
ERCA FLAVESCENS	YELLOW PERCH	1	40.1	15	<0.1
_				•	

PHYSICOCHEMICAL MEASUREMENTS RECORDED AT UNITS 2/3 INTAKE DURING THE JUNE 1981 IMPINGEMENT SAMPLING PROGRAM. TABLE 4.4-4

	1	6 June	<u> </u>	1	9 June	2	2	3 June	<u> </u>	2	26 June	<u> </u>	3	30 June	<u> </u>
Depth (m)	<u></u> a	<u>0.0</u> .t	\	īª.	<u>o.o</u> .t	5 <u>at</u> .	T a	<u>0.0</u> .i) <u>Sat</u> .	ā _	<u>D.o</u> .t	Sat.		<u>0.0</u> ,b) <u>Sat</u> .
Surface	26.0	6.9	84	25.0	7.1	85	20.8	7.0	78	21,8	7.4	84	23.0	7.6	87
1.0	26.0	6.9	84	25.0	7.1	85	20.8	7.0	78	21.8	7.4	84	23.0	7.6	87
2.0	26.0	6.9	84	25.0	7.1	85	20.8	7.0	78	21.8	7.4	84	23.0	7.6	87
3.0	26.0	6.9	84	25.0	7.1	85	20.8	7.0	78	21.8	7.4	84	23.0	7.6	87
4.0	26,0	6.9	84	25.0	7.1	85	20.8	7.0	78	21.8	7.4	84	23.0	7.6	87
4.5	26.0	6.9	84	25.0	7.1	85	20.8	7.0	78			- -	23.0	7.5	86

⁽a) Temperature - °C(b) Dissolved oxygen - mg/l

PHYSICOCHEMICAL MEASUREMENTS RECORDED AT UNITS 2/3 INFAKE DURING FME JULY 1981 IMPINGEMENT SAMPLING PROGRAM. TABLE

ŀ	SA SA	සින් සින්	88	88	ŀ	Sat	81	81	8	8	8	1	'
17 July	8	25.0 7.2 8		7.2	31 July	8	20.5 7.4	7.4		7.3		ı	ı
	-	25.55 6.05	25.0	25.0 25.0	"	μİ	20.5	20.5	20.5	20.5	20.5	1	ı
ļ	Sat.	88 88 88 88	88	2 2	* 	Sat.	7.5	7.5	75	15	35	1	75
14 July	3	27.5 6.8 27.5 6.0	0. 20.	6,9	28 July	. <u>1</u> 00 Sat.	6.8	6.8	8.9	6.8	6.8	1	6.8
	F;	27.5	27.5	27.5			20.6	50.6	20.6	20.7	20.7		20,7
; R	Sat.	& & & &	68	చే చే	ŀ	Sat.,		1			ı		1
10 July	8	2.00	n 0.	6,9 6,9	July	0 ::	٠ *	*	¥	*	*	*	,
71	- į	26.3 26.3	26.1	26.1 26.1	72	-	22.2	22.2	27.7	. 22.2	22.2	25.7	•
:		96 85 85			k	Sat.	91	£	δĹ	77	7.7	•	
7 ժոլչ	400	24.3 7.3 24.5 7.3	'n	7.3	21 July	90	6.9	9.9	9.9	9	6,5	1	ı
	e_	24.3 24.5	24.6	24.6		-	25.2	25.1	25.1	25.1	75.1	1	ı
	Depth	Surface 1-0	3.0	4.6 5.4	÷	(ili)	Surface	1.0	2.0	3-0	4.0	4-5	5.0

(a) Temperature - °C (b) Utssolved oxygen - mg/l (c) Instrument malfunction

TABLE 4.4-6 PHYSICOCHEMICAL MEASUREMENTS RECORDED AT UNITS 2/3 INTAKE DURING THE AUGUST 1981 IMPINGEMENT SAMPLING PROGRAM,

B	4 August			7 August			11	August	t	14 August			
Depth (m)	<u></u>	00p	<u>Sat.</u>		DO	Sat.	<u> </u>	20	Sat.	<u>T</u>	DG	Sat.	
Surface 1.0 2.0 3.0 4.0 5.0	22.7 22.6 22.6 22.6 22.6 22.6	7.3 7.3 7.2 7.2 7.2 7.2	84 84 84 83 83	23.0 23.0 23.0 23.0 23.0	7.3 7.3 7.2 7.2 7.2	84 84 83 83 83	22.3 22.3 22.3 22.3 22.3	6.6 6.5 6.5 5.5	75 75 75 75 75 75	24.2 24.2 24.2 24.2 24.2	5.5 5.5 5.4 6.4	65 65 64 64	
	1	8 Augus	t c	21	. Augus	t	25	August		29	Augus	t	
Deoth (ता)	<u> </u>	00	Sat.	<u>"</u>	20	<u>sat.</u>	<u>T</u>	00	<u>šat.</u>	<u> </u>	DC	Sac.	
Surface 0.5 1.0 2.0 3.0 4.0	22.0	7.5	85 - - -	23.0 23.0 23.0 23.0	7.9 7.9 7.9 7.9	91 91 91 91	24.2 24.2 24.2 24.2 24.3	7.9 7.9 7.7 7.6 7.5	93 93 91 89 88	24.5 24.5 24.5 24.5 24.5	7.7 7.7 7.7 7.7 7.7	92 92 92 92 92	

⁽a) Temperature - °C.
(b) Dissolves oxygen - mg/l.
(c) Measurements taken in Kankakee 25ver adjacent intake canals.

TABLE 4.4-7 PHYSICOCHEMICAE MEASUREMENTS RECORDED AT UNITS 2/3 INTAKE DURING THE SEPTEMBER 1981 IMPINGEMENT SAMPLING PROGRAM.

	1	1 September		4	4 September			11 September			15 September		
Depth (m)	Та	DOp	% Sat.	<u> </u>	_DO_	Sat.	Ţ	DO	Sat.		_DO_	% Sat.	
Surface .	23.7	6.7	78	20.7	7.3	80	21.5	8.3	93	23.1	7.5	86	
1.0	23.7	6.7	78	20.7	7.2	79	21.5	8.3	93	23.1	7.1	82	
2.0	23.7	6.7	78	20.7	7.2	79	21.5	8.3	93	23.1	7.1	82.	
3.0	23.7	6.7	78	20.7	7.2	79	21.5	8.3	93	23.1	7.1	82	
4,0	23.6	6.7	78	20.7	7.2	79	21.5	8.3	93	23.1	7.1	82	
4.5	-	~	-	~	~	~	21.5	8.3	93	_	-	-	

	18 September			22	22 September			eptembe	er	29 September			
Depth (m)	Тa	00p	% Sat.		DO	% Sat.	Ţ	_DO	% Sat.		_00_	Sat.	
Surface 1.0	17.6 17.5	8.0 7.9	83 82	18.2 18.2	5.3 5.3	56 56	17.4 17.4	9.2 9.1	96 95	20.0 20.2	8.5 8.6	92 93	
2.0	17.5	7.9	82	18.2	5.3	56	17.4	9.0	94	20.3	8.6	95	
3.0 4.0	17.5 17.5	7.9 7.9	82 82	18.2 18.2	5.3 5.3	56 56	17.4 17.4	9.0 9.0	94 94	20.3 20.4	8.6 8.6	95 95	

⁽a) Temperature ~ °C.(b) Dissolved oxygen ~ mg/l.

TABLE 4.4-8 NUMBER, WEIGHT AND LENGTH RANGE OF ALL FISH TAXA COLLECTED DURING IMPINGEMENT SAMPLING AT THE DRESDEN STATION, JUNE 1981

Taxa	No.	Total Weight (g)	Average Weight (g)	Length Range
Gizzard shad	2,852	70,634	24.8	48-297
Carp	864	3,814	4.4	38-92
Black bullhead	214	2,295	10.7	67-165
White crappie	184	4,119	22.4	78-222
Channel catfish	78	1,703	21.8	65-415
Emerald shiner	55	_a	-	68-108
Black crappie	41	1,022	24.9	80~219
Stonecat	29	1,035	35.7	82-190
Bluegill	27	832	30.8	46-190
Northern pike	20	1,751	87.6	102-595
Freshwater drum	12	440	36.7	40-262
Green sunfish	10	125	12.5	50-152
Trout-perch	9	59	5.6	84-96
Bowfin	6	116	19.3	112-144
Smallmouth bass	5	32	6.4	72-103
Golden shiner	4 4	-	-	79-115
Yellow bass	4	185	46.2	135-170
Quillback	4	136	34.0	100-133
Carpsucker sp.	4	96	24.0	90-151
Spotfin shiner	4	-	-	66-83
Smallmouth buffalo	3	50	16.7	101-110
Rock bass	3	7	2.3	46-54
Redhorse sp.	3	25	8.3	87-102
Bluntnose minnow	2	-	-	65-72
Orangespotted sunfish	2	22	1.1.0	51~105
Suckermouth minnow	4 3 3 2 2 2 2	-		102-103
Shorthead redhorse		15	7.5	87 - 106
Grass pickerel	1	6	6.0	100
Longnose gar	1	192	192.0	494
Threadfin shad	1	11	11.0	120
River carpsucker	1	13	13.0	1,26
Hornyhead chub	1	65	65.0	200
Cyprinidae	1	-	•	42
Largemouth bass	1	35	35.0	1.45
Pumpkinseed	1	23	23.0	99
Total	4,451	88,858		

^aWeights not taken of most minnow species.

TABLE 4.4-9 NUMBER, WEIGHT, AND LENGTH RANGE OF ALL FISH TAXA COLLECTED DURING IMPINGEMENT SAMPLING AT THE DRESDEN STATION, JULY 1981.

Scientific Name	Common Name	Na.	Total Weight (g)	Avg. <u>Weight (a)</u>	Length Min.	(пл) Мах.
CYPRINUS CARPID	CARP	23275	127902	5,5	46	377
DOROSOMA CEPEDIANUM	GIZZARO SHAD	7505	78872	10,5	15	371
ICTALURUS PUNCTATUS	CHANNEL CATFISH	1022	23235	22.7	48	366
NCTROPIS ATHERINDIDES	EMERALD SHINER	245	_4_	_	56	121
POMOXIS ANNULARIS	WHITE CRAPPIS	232	8218	35.4	44	237
APLODINOTUS GRUNKIENS	FRESHWATER DRUM	186	1260	6.8	45	246
POMOXIS NIGROMACULATUS	BLACK CRAPPIE	110	3437	31.2	38	245
NOTURUS FLAVUS	STONECAT	55	1308	23.8	44	188
ESOX LUCIUS	NORTHERN PIKE	33	1496	45.3	109	275
PERCOPSIS OMISCOMAYOUS	TROUT-PERCH	29	151	5.4	40	111
	SHORTHEAD REDHORSE	45 18	6129	340.5	187	502
MOXGSTGMA MACROLEPIDOTUM	BLACK SULLHEAD	16	376	23.5	75	167
TOTALURUS MELAS	GOLDEN SHINER		210	•	72	140
NOTEMIGONUS CRYSOLEUCAS		16	63	5,7		
LEPONIS HOMILIS	ORANGESPOTTED SUNFISH	11	57	5.2	56	80
MICROPTERUS SALMOIDES	LARGEMOUTH BASS	11			33	97
POMOXIS SPP.	CRAPPIE	11	- 40		27	41
MORCHE SAXATILIS	STRIPED BASS	10		4.0	62	.71
MORGNE MISSISSIPIENSIS	YELLOW BASS	9 9	331	36.8	134	160
PIMEPHALES VIGILAX	WONKIN DASHLIUB	9	1000	201 7	58	80
CARPOIDES CYPRINUS	QUILLBACK	7	1293	194.7	94	340
PIMEPHALES NOTATUS	BLUNTNOSE MINNOW	7	-	-	57	81
LEPOMIS MACROCHIRUS	BLUEGILL	5	180	30.0	97	141
LEPOMIS CYANELLUS	GREEN SUNFISH	5	84	16.8	50	160
MOXOSTOMA ERYTHRURUM	GOLDEN RECHORSE	4	189	47.3	78	196
NOTURUS GYRINUS	TADPOLE MADTOM	4 3	24	6.0	75	81
AMIA CALVA	BOWFIN	3	77	25.7	83	160
MICROPTERUS DOLOMIEUI	SMALLMCUTH BASS	3	49	16.3	92	157
NOTROPIS SPILOPTERUS	SPOTFIN SHINER	2	-	-	66	96
KOTROPIS HUDSCNIUS	SPOTTAIL SHINER	2	444		80	91
MOXOSTOMA ANISURUM	SILVER REDHORSE	3 2 2 2 2 2 2	624	312.3	185	355
AMBLOPLITES RUPESTRIS	ROCK BASS	2	31	15.5	90	96
LEPISCSTEUS OSSEUS	LONGNOSE GAR	2	144	72.a	158	475
SEMOTILUS ATROMACULATUS	OREEK CHUB	1			120	110
NOCOMIS BUGGUTTATUS	HORNYHEAD CHUB	1	69	69,0	185	186
NOTROPIS LUTRENSIS	RED SHINER	1	4	4.0	70	70
MOTROPIS CORNUTUS	COMMON SHINER	1		-	68	68
ALOSA CHRYSOCHLORIS	SKIPJACK HERRING	1	10	10.0	105	105
CATOSTOMUS COMMERSONI	WHITE SUCKER	1	. g	9.0	100	100
LEPOMIS GIBBOSUS	PUMPKINSEED	1	35	35.0	112	112
PERGA FLAVESCENS	YSLLOW PERCH	:	15	15.0	112	112
F0-741		00000	200710			
TOTAL		3 29 5 9	255712			

⁽a) Weights not taken

552,716 egl'tr 1/101 H BOWOXIQ 2B1 YMREGSHILEQ BOBEZLBIQ CRAPPIE ъб 0.01 ŭ. BOCK BASS 0"9 SOT 90% PRITE SOCKER CATOSTOMUS COMMERSONI 97 0,2 нтеньти сувьгложев CARPOIDES VELIFER SUTALOMASTA SULTTOMSS PROMALSM AMBATTMIM \$83 0,582 SPOTTED SUCKER SKEEK CHUB 060 081 09 09 REWIRE WILLOWS ACESCAIR SELTCELEBUS CASECULOVE 0‡ Ó۲ MONNIN 133 EET 0102 SD DOSCROWA SETENBASE THREADFIN SHAD ē, [8 0.12 193 SSAD HITUOKLIJAMS OSE 0.028 D+0'I R2170100 x 9845 162 £, 9S£ SECTOMIAS SUBSTROKOIM 16 δZE SSA8 KTUOMEDRA. 29 9 MOTGAM BUDGGAT SENTERS SENTENCE 9.4 5.521 5.1 7.71 8.535 145 MOXOSTOMA ERYTHRURUM 452 ЗЗВОНСВЫ КВОПОЎ 469 CARPIOSES CYPRINUS 338 971 919 <u>ORITEBACK</u> M 29 PONNIN 350NUND78 SUTATOM ZEJAHABMIG 593 £19 CARMASIUS AVRATUS 091 R\$130709 REBOMIS CHARGERERS
WORDME CHRYSOPS EREEN SONETRH 28 29 54 9 692 01997 SZAG BILLW 060 944 97 89 g изміна озу SISMERIAN SIEGRION 300 t'09 822 184 MORTHERN PIKE Salona Kosa 3,725 69t 332 01942 CORDELE HIDDOM WOODIN PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS
PERCOPSIS ONISCOMPYCUS BULLHEAD MINNOW 99 ŢΔ 6'5 34 801 9∓ TROUT-PERCH 8, 78 978 79 797 STRIPED BASS ¥ 9,88 KETTOM BYSS 051 454 ٤1.82 BLACK BULLYEAD 092 94 922 8 CCIVEURUS METHS SERIMORDAN SINGRET 1198 460 85 **∠9€** 07 37193078 26 S91 NOTEMIGONUS CRYSCLEUCAS LEPOMIS HUMILLIS 74 SOFDEN SKINER £*9 - KSIRNUZ GETTOSZBOWARC 96 99 23,205 12,418 23,210 88 8.878 0.468, ; 979 4.75 91 SIMALLMOUTH BUFFALC SCHVBRB SNBOtici 909 75 81 CARPIODES CARPIC RIVER CARPSUCKER 078 69 8,74 ÞΦ FLATHEAD CATFISH SAFCONCLIS OFINESTS 121 S. EI 588 SUMALE SUBURTON TACENOTS 2°5 10°10 262 ġģ CARPCIDES SP. CYBBRACKER PERMONIS NIGROMACOLATINS 232 09 102,5 BLACK CRAPPIE D9 \$26° \$2 901 83 EMERALD SHINER ACTROPIS ATKERINGIDES асярновя фантярна SIV 88 9,682 96 MOXOSICMY WYCBOFFEEDOLDM TSO'b Z9t 99 0,25 791 MURC ABTAWHSZRA APLODINGTUS GREUNIEUS. t°SC 996, 9 SIRAJUMMA SIXCMOR 44 761 MITTE CRAPPIE CIS 123,08 810,05 846,9 8. ZS 372 9t 924 CHANNEL CATFISH ICTALURUS PUNCTATUS 5.31 5.81 362,€ CYPRINUS CARPID Ζţ 299 CYKb GARZ GAAZZID MUNALGBRED AMORDAGO 330 679,3 - 11 pg (B) 24619W (<u>p) 148194</u> 0)1 оппол каппо · xeh Scientific Name լեայ կֆ**հ**սեր rôny. 16101

IMPINGEMENT SAMPLIKS AT THE ORESDEN STATION, AUGUST 1981.

TABLE 4.4-10 NUMBER, WEIGHT AND LENGTH RANGE OF ALL FISH TAXA COLLECTED DURING

they heright not taken.

TABLE 4.4-11 NUMBER, WEIGHT, AND LENGTH RANGE OF ALL FISH TAXA COLLECTED DURING IMPINGEMENT SAMPLING AT THE DRESDEN STATION, SEPTEMBER 1981.

Scientific Name	Common Name	<u>No</u> .	Total <u>Weight (d</u>)	Avg. Weight (g)	<u>Lengt:</u>	<u>h (mm)</u> <u>Max</u> .
OOROSOMA CEPEDIANUM	GIZZARD SHAD	9,653	97,498	10.1	56	385
APLODINOTUS GRUNNIENS	FRESHWATER DRUM	236	2,300	9.7	53	245
OMOXIS ANNULARIS	WHITE CRAPPIE	215	8,083	37.6	42	322
CTALURUS PUNCTATUS	CHAMNEL CATFISH	201	7,617	37.9	45	391
CYPRINUS CARPIO	ÇARP	119	2,737	23.0	21	362
CARPOIDES SP.	CARPSUCKER	66	878	13.3	50	365
NOTROPIS ATHERINOIDES	EMERALO SHIMER .	43	_å	-	42	110
MOXOSTOMA MAGROLEPIDOTUM	SHORTHEAD REDHORSE	39	9,440	242.1	225	427
AOTURUS FLAVUS	STONECAT	33	864	26.2	75	200
EPOMIS MACROCHIRUS	CLUEGILL .	23	478	20.8	49	157
ALDSA CHRYSOCHLDRIS	SKIPJACK HERRING	12	236	19.7	105	203
PERCOPSIS OMISCOMAYCUS	TROUT-PERCH	10	55	5.5	55	102
_EPOM1S HUMILIS	QRAKGEŞPÜTTED SÜNFISH	10	64	5.4	52	89
NOTEMIGONUS CRYSOLEUCAS	GOLDEN SHINER	9 9 7	-	-	85	125
CARPOIDES CARP13	RIVER CARPSUCKER	9	2,253	250.3	81	380
ORONE MISSISSIPPIENSIS	YELLOW BASS	7	356	53.9	154	182
OMOXIS NIGROMÁCULATUS	SLACK CRAPPIE	7	179	25.5	72	173
COTALURUS MELAS	BLACK BULHEAD	4	114	28.5	55	152
OROSOMA PETENSE	THREADFIN SHAD	2	20	10.0	88	106
MOXOSTOMA ANISURUM	SILVER REDMORSE	2	903	451.5	298	445
CTALURUS NATALIS	YELLOW BULLHEAD	4 2 2 2 2 2	14	7.0	63	83
ASIDESTHES SICCULUS	BROCK SILVERSIDE	2	5	2-5	62	. 97
SMERUS MORDAX	RAINBOW SMELT	1	. 5	5.0	102	102
SOX AMERICANUS VERMICULATUS	SRASS PICKEREL	1	30	30.0	190	190
SDX LUCIUS	NORTHERN PIKE	1	190	190.0	325	325
OTROPIS LUTRENSIS	R⊡ SHIMER	1	-	-	69	69
IMEPHALES VIGILAX	BUTTHEAD WINNOM	1	٦.		. 73	. 73
EMOTILUS ATROMACULATUS	CREEK CHUB	1	. 8	8.0	102	102
ARPOIDES CYPRINUS	QUILLBACK	1	215	215.0	260	260
CT10BUS CYPRINELLUS	BIGMOUTH BUFFALO	Ţ	155	155.0	257	257
NOTURUS GYRINUS	TADPOLE MAD TOM	1	3	3.0	58	58
ORONE CHRYSOPS	WHITE BASS	÷	6	6.0	88	88
MBLOPLITES RUPESTRIS	ROCK BASS	1	80	80.0	166	-66
EPOMIS CYANELLUS	GREEN SUNFISH	ţ	10	10.0	90	90
MICROPTERUS DOLOMIEUI	SMALLMOUTH BASS	1_	4	4.0	72	72
TOTAL		10,717	134,800			

⁽a) Weight not taken.

Electronic Filing - Received, Clerk's Office : 10/16/2015

27210		0.15	12	Ē	τ	t	z	Į.	ć.	961	F1+	51	5109	P+SB	ZHY	55032	0.161	A SO RMIS
0.828	9576	0.80	ı	0	o	T	0	c	.	T	Ţ	٠	10013	0.021	ภ	o	18 als	40
0.301	0.07	0.00	0	0	0	O.	•	e e	0	Г	2	c	F*88	5.17	٤	C	TB 438	۶Z
0.021	0.46	ዕኅፊቱ	Ü	0	0	Ð	0	ī	T	0	S	τ	2192	0107	ŧ.	e	18 J3S	12
34210	5,041	0.78	τ	0	š	Ð	0	o	0	₹.	0	o-	SIZOT	8,001	b	ō	IB a38	45
01200	0 - ቅፃ፤	0.58	0	Ţ	U	0	0	0	0	Ţ	3	э	4 53 2	0.681	z	0	18 JIS	ŀΤ
0.#11	0104	0.05	0	0	Q	0	9	•	ţ	v	9	o o	4 3 6 1	2182	1.7	0	78 dds	0.3
138+0	0.48	0'95	0	0	0	Ð	G	0	¥	4	28	τ	2122	6.65	YΣ	0	18 dHS	٤
0.588	0.03	0.54	Ţ	T	0	O	0	•	0	4	0.6	٤	2115	7.27	7.9	0	18 907	TΩ
92.0	S128	0.54	0	o	0	0	O .	0	0	ī		r	4.51	ሃ የ የ5	8	6	18 907	25
0.085	0.154	0,00	Ţ	0	0	O-	0	0	ø	4	7.5	0) ú±	E198	50	Ę.	18 309	ŀΖ
01595	51261	0.48	۵	0	O	0	Z	9	91	보다	z	0	9.55:	610/3	45	25	FO MAY	07
O'SAE	0.484	0.48	T	0	O	0	0	0	G	ΥE	50	0·	2160	9.98	25	82	T8 969	71
ው.ላይነ	8118	0.40	0	ø	O-	0	0	0	2	OT	12	c	0.15	B, 68	Q٤	48	ts say	εī
15ቀ•0	0.48	0.23	0	G	0	0	0	0	Z	вт	0.7	0	9"51	0,78	GΈ	677	E8 909	3.0
0.611	0.98	0.58	0	0	Ð	0	o	C	2	73	8	0	7,81	1.09	30	404	TR 907	ያ
132'0	0.69	0.68	0	a	0	O .	0	Ð	S	á٦	9	0	0,51	1.64	30	8324	18 904	ድ
0.901	0°7%	0.05	O.	0	0	O .	Ò	0	Ů.	Ξï	61	C	0.61	73.7	1.0	2288	TB 7/MC	0.5
0.001	2.88	0 * 2 %	o	0	c	0	O-	9	O	0.1	20	0	0.61	2.5%	OΣ	1604	IB JUC	
0.801	0.07	0.84	0	0	0	0	O-	0	0	ΤĽ	91	٤	7.74	6.55	30	3240	SB THE	23
0.201	0,428	0.05	O.	0	p	٥	•	D .	0	65	11	0	5 + I I	6118	GΩ	7951	38 MC	0.2
0.49	C1 78	0125	o .	0	3	0	0	•	0	8	35	o	E+11	£°69	0.0	0912	38 3 06	91
0.88	0.499	0.48	0	0	0	O	Q.	e	o	Z	58	6	0,8	4.74	OΣ	****	18 JUL	43
0.58	9212	0.54	0	G	0	0	ø	Ð	O	Z.	76	I.	416	6.65	08	ሪ ዓዩቱ	t8 imf	ŭ
0,772	0.48	9.23	Ţ	0	6	0	e	Ð	Ţ	z	9č	0	9149	7 ° 82	OΣ	4146	10 T	ÿ
0.59	0.68	0.25	0	o	6	0	0	0	0	b	77	0	10,9	4177	05	099	18 MIII,	64
0.87	0,54	0.86	0	o-	0	O	0	0	0	0	47.	Ţ	2 3	1.26	9.0	871	38 900	20
0.88	0,54	2010	0	Q	o	O	0	Ü	0	r	22	C	2'4	9179	3.0	92	THE NUMBER	ನಶ
0.07	0.024	0.438	0	0	O	0	U	0	0	D .	4	0	115	0'179	5	0	16 MH	eı
0.09	0'07	0.08	0	0	0	0	0	0	٥	ð.	τ	0	0.10	0.08	Ī	0 '	18 NW.	
XAM	@3H	NYN	566'6 560'0	4'A8Z 0'09Z	\$2 6 °8	358.8 300.0	6'66%	0.0%! 0.9%!	6149T	104°A	6'64	4516	ซร	×	ĸ	3	HTA.	
	Зайая											, 0.0g						

TABLE 4.4-12 LENGTH-FREQUENCY DISTRIBUTION OF CARP COLLECTED DURING IMPINGEMENT SAMPLING AT THE

DRESDEM STATION, JUNE-SEPTEMBER 1981.

C. WINKER OF HANKFASHER OSCANISHS TENGTH AND ALMOST LENGTH MANASHES LENGTH BENEVER OF TENGTH TOWNS TO THE CHORD TOWNS TO THE CONTROL OF THE C

LENGTH-FREQUENCY DISTRIBUTION OF 6172ARD SHAD COLLECTED DURING IMPINGEMENT SAMPLING AT THE DRESDEN STATION, JUNE-SEPTEMBER 1981. TABLE 4.4-13

		¥₩X	0.54.0	240.0	297.0	0.64%	259.0	316.0	01988	126.0	355.0	246.0	320.0	371.0	294.0	310.0	0,0	368.0	390.0	360.0	349.0	360.0	346.0	314,0	385,0	385.0	353.0	4,0	6.9	302.0	9,4	390.0
	.		1 5					31	82.			តិ ខ	333								_					38		6 374		9	0 325	33
1000	KHRO	MEP	162.0	172.0	175.5	146	131,5	7.51	121	110.0	122.0	0.0	99	0.09	64.5	72.0	22	122.	168.0	88	103.0	79.5	85.0	76.	80.0	108	80.0	139.0	100	96	96	
		NIH	106.0	51.0	95.0	48.0	57+0	19.0	93.0	913.0	54.0	29.0	52.0	54.0	16.0	55.0	26.6	63.0	65.0	61.0	54.0	44.0	46.0	90.00	61.0	64.0	80.0	57.0	73.0	60.09	655.0	16.0
	290.0	6'666	,	•	1	٥	o	-	٥	٥	C4	ô	-	-	- '	2	-	10	4	lo.	•	N	ष	-	-	12	F	11	10	-	ю	5 0
	260.0	289.9	0	٥	1	Φ	Đ	þ.	ru	0	٥	Ç	-1	٥	N	9	-	Ç	N	4	7	7	O	-	٢	7	0	4	4	٢	ю	40
	230.0	52658	°	m	20	ç	-	e	ur.	c	~	*	٥	•	=1	N	÷	40	٥	4	•	l.	q	6	0	2	-	æ	40	9	c	£9
(##)	200.0	229.9	. *	10	۰	ष	m	n	%	-	1	O	٥	1	+4	p	÷	4	4	-	7	7	64	٥	-	^	-	ď	5	100	٥	3,6
	170.0	199.9	16	22	16	91	'n	io.	ю	•	77	#	0	-1	ce	φ	N	n	ď	-	7	1	м	9		п	٥	ù-	4	m	7	122
ENGTH INTERVALS	140.0	149.9	35	14	1.1	14	15	٥	-9	ĊI	'n	o	, -	o	Đ	٥	Q	0	N	N	4	٥	o	M	Ģ	ካ	c	7	q	0	-	110
LEMG	110,0	139.9	0-	o	14	21	3.4	71	31	51	45	1.9	42	i	S	12	۲-	•	12	1.3	ιà	tù	F	r:	6	h	ut:	۳	7	12	۰	393
	86.0	6'601	ľ	۰	- ⊓	n	-	N	11	7	Φ	1	o	-	2	7	()×	1.4	۰	17	20	17	20	ţ	41	ø	23	10	36	S. S.	4	300
:	50.0	79.9	6	4	ə	M	-	m	0	o	'n	e M	4	21	46	37	90	-	4	17	13	28	23	Ç	58	긹	GI.	Œ	lo.	ţ	b	233
	20.0	49.9	0	4	9	-	4	9	0	Ģ	٥	4	9	φ	-	٥	0	٥	9	P	•	CV.	-	•	0	٥	•	c	٥	÷	c	ۍ
		ű	31,7	E - 67	44.9	40.5	33,5	57.4	47.1	17.5	50.4	39,4	48+2	44.1	56.40	83.7	47.3	98.6	79.0	83.1	85.5	6B, B	77.5	44.9	53,2	8.44	64.8	46.4	92.4	4 05	68+7	70.4
		×	164.4	168.4	175.0	145.7	147.4	150.8	142.2	120.9	133,3	82.1	80.1	76.3	87,7	93.9	68.6	173,2	131.3	150.0	140.3	104.2	115.1	89.2	97.7	161.6	101.6	170.3	160.0	109,8	124,8	174 127.5
		3	1.9	3	99	69	9	80	90	61	Ş	Š	6.	9	62	99	9	63	90 100 100 100 100 100 100 100 100 100 1	61	99	Ŷ	ş	99	99	9	40	୍ଦ	90	69	32	174
		۵.	4.5	353	466	808	478	285	26.9	1360	1445	1493	514	673	213	865	3711	ETE	463	1304	923	335	143	1039	227.2	747	32.7	1418	1182	466	1653	Rb862
		RATE	1																			AIIG 81										roman s
		Ġ	12																													SUMMARY FOTALS

P-MURDER OF HAMFASIARED ORGANISARS)
N=WURDER OF LENGTHS; NOW-SHORTES) LERGIH
X-ACAL LENGTH; MED-MEDIAM LENGTH
SUFTIANDARD DEVIATIONS MAX-GREATES LENGTH
NS-DATA NOT AVAXLABLE

LENGTH-FREQUENCY DISTRIBUTION OF CHANNEL CATFISH COLLECTED DURING IMPINGEMENT SAMPLING AT THE DRESDEN STATION, JUNE-SEPTEMBER 1981. TABLE 4.4-14

X X St 195.0 50.0 80.0 110.0 170.0 200.0 230.0 260.0 290.0 240.0 2	Name							;	LENI	BATH TRIE	LERBIN TRIERUALS (HM)	HHY					1	
115.0 0.9 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	1155.0 0.0 0.0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1		7	>	ā	20.0	0.00	9.08	110.0	0,07	170.0	2007	0,055	260.0	290.0		######################################	
115.0 0.9 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	1155.0 0.0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0		- 1		! 0 ;			X - X - X		10.407	177.7	7.77	k - 455	41487	444.4	¥ ::	=	E
1145.0 314.7 0 314.7 0 314.7 1 1 1 1 2 0 0 0 0 0 0 68.0 1214.5 1104.3 314.7 0 314.7 1 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	196.4. 31.5. 0 1 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0			115,0	0.0	0	•	٥		e	•	٥	φ	۰	۰	3.13.0	115.0	113.0
1104-3	1100-3			115.0	04.19	٥	-	-	=	N	•	•	0	۰	÷	68,0	121,5	155.0
110.3 41.9 0 2 14 5 2 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0	110.3 41.9 0 2 14 5 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			104.7	31,5	ð	-	40	÷	o	-	٠	٥	0	0	65.0	104.0	187.0
126.6 57.2 0 0 1 14 14 1 1 1 0 1 1 0 1 1 0 1 1 10.0 10.0	1326.4 87.2 0 1 14 14 11 1 0 1 1 0 1 2 70.0 104.0 1281.2 24.7 0 1 1 1 4 11 1 1 1 0 1 1 0 1 1 2 70.0 104.0 1281.2 24.7 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1			110.3	41.9	٥	(N	14	ທ	ĊI	0	0	÷	r	¢	70.0	97+0	276.0
131/2 24.9 0 1 14 11 1	1351.2 64.4 0 1 14 31 1 0 0 0 0 1 10.4 195.5 3.7.6 0 2 2.2 4 1 0 0 0 1 1 0 0 1 0 0 0 1 0 <td></td> <td></td> <td>126.6</td> <td>67.2</td> <td>٥</td> <td>F</td> <td>16</td> <td>n</td> <td>-</td> <td>-</td> <td>٥</td> <td>1</td> <td>o</td> <td>#</td> <td>70.0</td> <td>104.5</td> <td>415,0</td>			126.6	67.2	٥	F	16	n	-	-	٥	1	o	#	70.0	104.5	415,0
126.5 50.7 0 13 16 2 2 1 1 0 1 82.6 1126.5 146.5 37.6 0 3 22 4 1 0 0 1 0 </td <td>126.5 36.7 0 0 13 10.0</td> <td></td> <td></td> <td>131.2</td> <td>6.4.9</td> <td>٥</td> <td>1</td> <td>14</td> <td>3.1</td> <td>Ħ</td> <td>٥</td> <td>¢</td> <td>÷</td> <td>7</td> <td>ķ</td> <td>75.0</td> <td>110.0</td> <td>310.0</td>	126.5 36.7 0 0 13 10.0			131.2	6.4.9	٥	1	14	3.1	Ħ	٥	¢	÷	7	ķ	75.0	110.0	310.0
195.5 37.6 9 2 22 4 1 0 0 1 0 0 1 90.0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 1 10 0 10 10 0 10 10 0 10 10 0 10<	31 195.5 37.6 9 3 22 4 1 0 0 1 1 0			126.5	50.7	9	0	13	10	2	Ç4	4	-	٥	1	82.0	112.5	128,0
118.5 40.5 0 6 8 83 9 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	36 104.2 40.5 0 6 53.0 102.6 36 124.6 34.0 6 14.0 11.0 0 1 10.0 0 1 10.0 0 1 10.0 0 1 10.0 0 1 10.0 0 1 10.0 0 1 10.0 0 1 10.0 0 1 10.0 0 1 10.0 0 1 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0 10.0 0			105,5	37.6	o	8)	22	T		Þ	Ç	٥	-	٥	70.0	48.0	28H,0
36 138.3 44,9 0 2 34 41 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 48.0 1 0 0 0 0 1 0 48.0 1 0 0 0 0 0 1 0 48.0 1 1 0	36 138.5 44.9 0 2 14 41 0 1 0 0 1 52.6 10			164,2	40.5	۰	9	™	ò	Ģ	-	٥	F	•	٠	20.00	3.00 (5)	253.0
30 126.6 32.6 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 <td< td=""><td>30 126.6 32.4 0 0 0 1 0 121.0 30 144.7 73.6 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0</td><td></td><td></td><td>118.3</td><td>41.9</td><td>ð</td><td>8</td><td>य ≓</td><td></td><td>Q</td><td>•</td><td>Ħ</td><td>٥</td><td>٥</td><td>1</td><td>52.0</td><td>107.0</td><td>299,0</td></td<>	30 126.6 32.4 0 0 0 1 0 121.0 30 144.7 73.6 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0			118.3	41.9	ð	8	य ≓		Q	•	Ħ	٥	٥	1	52.0	107.0	299,0
30 144.7 73.6 0 3 9 5 2 6 0 1 3 59.0 123.0 30 124.6 35.4 1 0 6 19 5 6 0 1 0 48.0 123.5 32 125.7 84.6 1 0 0 0 0 1 9 56.0 123.5 32 175.4 84.6 1 0 2 0 0 0 1 96.0 123.5 24 139.7 55.2 0 1 1 0 2 0 1 56.0 123.6 36 101.6 58.2 0 1	30 144.7 73.6 9 3 7 9 5 5 6 6 0 1 3 57.0 123.0 123.0 123.2 123.4 2 35.4 4 1.0 6 4 123.0 123.0 123.4 2 35.4 4 1.0 6 4 1.0 6 1.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00.		\$26.6	32.6	٥	٥	a	2	'n	-	\$	٥	-	٥	82.0	121.0	266.0
30 124-6 35.4 1 0 4 19 3 0 0 1 97.0 123.0 32 135.7 47.3 0 0 0 0 0 1 97.0 123.0 32 135.7 47.3 0 0 0 0 1 97.0 123.0 34 142.7 61.1 0 1 4 12 3 0 0 0 1 95.0 123.0 24 142.7 61.1 0 1 1 1 1 0 56.0 123.0 123.0 34 142.4 68.7 0 1 </td <td>30 124.6 35.4 1 0 6 19 3 0 0 0 1 9 9.0 121.5 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3</td> <td>÷</td> <td></td> <td>144.7</td> <td>73.6</td> <td>0</td> <td>ιń</td> <td>٨</td> <td>Þ</td> <td>m</td> <td>ĘN</td> <td>٥</td> <td>ð</td> <td>-</td> <td>M</td> <td>57.0</td> <td>0.521</td> <td>356.0</td>	30 124.6 35.4 1 0 6 19 3 0 0 0 1 9 9.0 121.5 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	÷		144.7	73.6	0	ιń	٨	Þ	m	ĘN	٥	ð	-	M	57.0	0.521	356.0
32 135.7 47.3 0 4 20 0 1 97.0 123.0 29 175.4 84.6 1 0 2 12 4 2 0 1 97.0 123.0 24 125.4 84.6 1 0 2 0 1 2 56.0 138.0 24 139.7 55.1 0 1 1 1 1 1 10.0 0 0 0 1 10.0 <	32 135.7 47.3 0 0 4 20 6 0 0 1 0 1 97.0 123.0 2 4 15.4 84.6 1 1 0 1 2 12 12 4 1 1 2 2 5 46.0 138.0 2 4 12.4 84.6 1 1 0 1 2 12 1 1 1 1 2 2 5 46.0 138.0 2 4 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.0 139.2 0 13 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-0		124.6	4.00	-	٥	٠,	6	M	0	0	Đ	-	ø	48.0	121.5	278,0
29 175.4 84.6 1 0 2 12 4 2 0 1 2 5 46.0 138:0 2 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 54 142.7 55.2 0 1.3 11 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	29 175.4 84.6 1 0 2 12 4 2 0 1 2 5 46.0 138.0 2 142.7 61.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	^		135.7	47.3	ò	ò	•	30	۰	•	٥	-	0	-	97.0	123.0	355.0
24 142.7 61.1 0 1 4 52 3 0 0 2 7 0 56.0 122.0 34 139.9 551.2 0 1 1 1 1 1 56.0 122.0 34 139.9 551.2 0 1 1 1 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1	24 142.7 61.4 61.4 0 1 44.2 61.4 0 56.0 120.0 36.0 120.0 36.0 120.0 36.0 120.0 36.0 120.0 36.0 120.0 36.0 120.0 36.0 120.0 1 150.0 120.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 150.0 1 1 1 0	ęν		175.4	84.6	-	¢	N	e e	q.	7	٥	-	13	W	46.0	0.861	342.0
21 139: y 55: 2 0 1 26: 0 120: 0 1 26: 0 120: 0 1 26: 0 120: 0 1 26: 0 120: 0 1 26: 0 26: 0 26: 0 26: 0 26: 0 26	24 139; y 55; 2 0 1 3 12 1 1 0 2 0 1 55; 0 129; 0 34 124; 0 48; 7 0 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۰		142.7	1.18	o	-	Ŧ	÷	m	٥	۰	N	¢,	•	56.0	120.0	285.0
34 124 10 48 2 0 1 11 12 (4 7 0 0 0 0 1 15 0 19 0 19 0 19 0 19 0 19 0	34 2440 48.7 0 1 13 14 14 7 0 0 0 0 1 155.0 119.0 130.	٠		139.7	551.2	ث	ĸ	ניון	12	-	-	•	N	٥	1	56.0	122.0	294.0
30 101.6 58.2 0 13 11 3 1 0 0 0 0 0 0 0 2 58.0 H5.5 18 146.4 55.2 0 1 3 5 6 4 1 1 1 1 1 1 0 6.2 0 133.5 18 146.4 55.2 0 1 3 5 6 4 1 1 1 1 1 1 1 50.0 133.5 18 140.0 64.4 7 4 6 14 10 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 101.6 59.2 0 13 31 3 1 0 0 0 0 0 0 2 58.0 45.5 18 18 146.4 55.2 0 1 3 3 6 4 1 1 1 1 1 1 0 6.2 0 133.5 18 146.4 55.2 0 1 3 3 6 4 1 1 1 1 1 1 1 50.0 133.5 18 140.0 64.9 4 4 6 14 10 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	o		124.0	48.7	φ	-1	1	14	1×	9	9	Đ	0	7	35.0	319.0	5/2.0
146-4 55,2 0 1 3 6 4 1 1 1 1 0 42,0 133.0 133.0 134.0 455.2 0 1 3 6 4 4 1 1 1 1 0 42,0 133.0 135.0 136	18 146.4 55.2 0 1 3 6 4 1 1 1 1 0 42.0 133.0 18 146.4 55.2 0 1 3 6 5 1 0 0 1 1 1 50.0 133.0 18 146.4 55.2 0 1 2 2 6 5 1 1 0 0 1 1 1 50.0 120.0 49 140.0 63.7 0 2 2 6 5 1 1 0 0 1 1 1 2 45.0 130.0 64.1 77.3 27.9 6 15 1 17 14 2 0 1 1 1 1 1 4 50.0 120.0 64.1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	÷		101.6	59.2	0	F.	7	м	₩	٥	٥	9	¢	2	÷ . #5	#5,3	315.0
142.7 63.7 6 2 2 6 5 1 0 0 1 1 50.0 12B.0 12B.0 140.0 64.9 4 6 14 10 3 4 1 1 5 2 4 5.0 12B.0 12B.0 140.0 64.9 4 6 14 10 3 4 1 1 5 2 4 5.0 12B.0 130.0 140.0 64.1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18 142.7 63.7 6 2 2 6 5 1 0 0 1 1 50.0 12B.0 49 140.0 64.9 4 4 6 14 10 3 4 1 1 2 45.0 12B.0 49 140.0 64.9 4 4 6 14 10 3 4 1 1 1 1 4 45.0 130.0 64.9 4 6 15 1 1 17 14 2 0 1 1 1 1 1 4 45.0 130.0 123.1 63.0 63.1 0 1 1 0 10 1 0 1 0 1 0 1 0 1 1 1 1 1	ф		146.4	55.2	o	.=	19	⊀3	ব	-	1	-	-	٥	42.0	133,0	0.430
140.0 64.9 4 4 6 14 10 3 4 1 2 2 45.0 130.0 130.0 137.3 22.5 5 15 1 12 14 45.0 130.0 145.3 22.5 5 1 1 1 1 4 45.0 127.0 145.3 0 64.1 0 1 1 0 10 2 1 60.0 142.0 144.2 14.0 2 1 60.0 142.0 144.2 14.0 2 1 60.0 142.0 144.2 14.0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49 140.0 64.9 4 4 6 14 10 3 4 1 2 2 45.0 130.0 61.1 17 3 7 3 4 1 2 2 45.0 130.0 61.1 17 3 7 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c		142.3	63.1	٥	2	7	ø	IO.	П	ð	٥	-1	1	50.0	120.0	301.0
127.3 27.9 6 15 1 17 14 2 0 1 1 4 45.0 127.0 127.0 163.0 61.1 0 1 0 1 0 2 1 60.0 142.0 1163.0 61.1 0 1 0 10 7 0 2 1 60.0 142.0 1164.2 27.0 2 3 1 0 1 0 2 1 60.0 142.0 1164.2 27.0 0 0 1 1 3 2 0 0 0 1 0 51.0 1164.0 166.9 21.1 0 2 2 50.0 116.0 116.0 67.4 0 0 0 0 0 0 0 1 116.0 116	61 127.3 22.9 6 15 1 12 14 2 0 1 1 4 45.0 127.0 2 1 50.0 127.0 2 153.0 127.0 123.0 61.1 0 1 0 10 7 0 2 0 2 1 50.0 142.0 142.0 144.2 23.0 2 3 2 3 1 0 0 1 0 2 1 60.0 142.0 144.0 144.2 23.0 0 0 1 0 2 2 2 131.0 134.0 155.0 65.9 25.0 0 0 1 0 2 2 2 131.0 134.0 155.0 65.9 25.3 0 0 0 0 1 0 0 1 150.0 134.0 136.0 20.133.2 22.0 133.2 23.0 23.1 23.0 23.0 23.1 23.0 23.0 23.1 23.0 23.0 23.0 23.1 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	c		140.0	64.4	٧.	4	·å	7	10	м	ব	-	.4	či	45.0	130.0	342.0
163.0 64.1 0 1 0 10 7 0 2 1 60.0 142.0 144	23 163.0 64.1 0 1 0 10 7 0 2 1 60.0 142.0 13 144.2 73.0 2 1 60.0 142.0 143.1 0 1 45.0 2 3 1 0 1 0 1 0 1 45.0 74.0 74.0 15.1 15.1 15.2 73.0 1 7 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1	٠		127.3	77.5	4	15	-	17	44	7	o	-	-1	5	45.0	127.0	395.0
114.2 73.0 2 3 2 3 1 0 1 0 0 0 1 45.0 98.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 1	13 114,2 73.0 2 3 2 3 1 0 1 0 1 0 0 1 45,0 98.0 11 13 2 0 0 0 1 0 51.0 114,0 114,0 115,5 65.9 91.0 114,0 115,5 65.9 91.0 11 3 2 0 0 0 1 0 51.0 114,0 115,0 95.3 0 0 0 0 0 0 0 0 0 1 114,0	٥		163.0	61.1	ċ	-	¢	16	^	9	ĸ	0	Ŋ	1	90.09	142.0	326.0
14.15.5 65.6 6 4 1 3 2 6 0 0 1 0 51.0 34.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$1 14.15.5 65.0 0 4 1 3 2 0 0 0 1 0 51.0 13.4.0 15.5 56.9 21.1 0 51.0 13.4.0 15.5 56.9 21.1 0 3 1 3 0 0 2 2 51.0 13.0 13.0 20.0 57.3 0 0 0 3 1 0 0 1 1 0 0 1 15.4.0 20.0 0 2 2 51.0 13.2 29.3 0 0 4 3 1 0 1 1 1 0 1 1 50.0 08.5 725 135.2 79.3 0 785 259 19 21 15 13 70 31 45.0	•		114,2	75.0	7	-7	r¥	м	-	÷	-	٥	0	-	0.24	98.0	307.0
566;9 95;3 0 3 0 5 1 2 0 0 2 2 511;0 130;0 570;0 67;3 0 0 0 1 134;0 200;0 135;2 79:3 0 9 4 3 1 0 1 1 1 0 1 1 50;0 98:5	15 566.9 91.1 0 3 0 9 1 2 0 0 2 2 50.0 130.0 130.0 9 150.0 130.0 130.2 570.0 67.3 0 0 3 1 0 0 1 154.0 200.0 1 1 0 1 1 1 0 1 1 50.0 08.5 20 133.2 79.3 0 9 4 3 1 0 1 1 3 0 1 50.0 08.5 776 130.1 61.9 16 80 185 259 19 21 15 13 70 31 45.0	e		2.5.1	65.0	٥	-	-	m	2	٥	0	•	14	÷	0.10	136.0	279.0
550,0 67,3 0 \$ 6 3 1 6 4 6 6 134,0 240,0	7 570.0 67.4 0 0 0 3 1 0 4 0 0 1 134.0 200.0 20 133.2 79.3 0 9 4 3 1 0 1 3 0 1 50.0 08.5 726 130.1 61.9 14 80 185 259 10 31 45.0	o		166.3	98.4	ф	ĸ	٥	ກ	-	r	c	٥	r.	2	9.10	130.0	314.0
29-3 6 9 4 3 1 0 1 3 0 1 50-0 08-5	20 113,2 79,3 0 9 4 3 1 0 1 1 0 1 50,0 08,5 776 120,1 61,9 16 80 185 259 10 31 15 13 20 31 45,0	_		\$50.0	67.43	ଦ	•	Đ	r	-	Ŷ	•	٥	0		114.0	200.0	332,0
	724 130:1 61:8 (4 60 185 259 89 31 15 13 20 31 43:0	٥	å	113.2	79.3	φ	÷	₹	.99	-	•	-	-	0		50.0	98.5	364.0
		÷			61.8	4.	9	185	259	919		5	6.1	20	**	0,23		415.0

PENUMBER OF URMEGRIRFO ORGANISMS:
NEMBER OF LEMOTHS! HIN-SHABELS! CLUCTO
X=MEGN LERGIL!
SD:STANDARD DEUIANIDM? MAX=UREATES! CLUCTO
NA=BATA NOT AVAILABEE

4.4-15 LENGTH-FREQUENCY DISTRIBUTION OF FRESHWATER DRUM COLLECTED DURING IMPINGEMENT SAMPLING AT THE DRESDEN STATION, JUNE-SEPTEMBER 1981. TABLE

DATE . P		×	3	20.6	50.0	109.9	139,9	149.9	20.	29.	230.0	289.9	290.0	712	MER	¥#¥
<u> </u>	! •	. E. E. E.	9.0	•	<	-			. Φ	9				81.0	91,6	81.0
3		9		, .	, -	٠,	, с	•	٥	Þ	٥	۰	¢	0.0	ф. Э	0.0
*	, 5	9	90	> 0	> <		0		٥	Ç	٥	0	٥	0.0	÷	0
Ě	. प	50.05		•	> [9 6		. 4	a	Ģ	0	0	٥	40.0	65.0	66.0
3		124.4	K . 60	ve	÷ 15			¢	٥	•	-		٥	90.0	76.0	01897
Ħ		71.0	22.7	> c		-	• •	. \$	•	٥	9	٥	٠	62.0	71.0	9.08
Ē	. 4	46.3	27.0	>=	• 6	-	,		•	٥	9	٥	¢	46.0	97.0	105.0
5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, r		u Lr	- =	, =	. 0	9	٥	a	÷	٥	45.0	54.5	70.0
Ī	30		27.4	10	, ,	, r.		• •	۰	1	٥	0	¢	53.0	62.5	205.0
Ē	16		7.7.7			4		•	٥	Đ	F	\$	•	9.0	68.0	248.6
;≡	, K.		30.0			2	- 40	Q	0	-	٥	٥	¢	56.0	0.87	210.0
	0 12		24.0	0	-			-	٥	¢	0	۰	٥	66.0	77.0	147.0
Ŧ,	4	in M	4.4	. 0	-	F	10	٠	٥	٥	9	Þ	o	72.0	100.0	102.0
Add 81	19	7.00	K. 40	ç	4	9	۰	ċ	7	9	٥	۰	0	57.0	0.70	186.0
AUG 81	0	88.4		ç	· 1×3	,	Ģ	-		÷	٥	۰	o	90.09	0.04	143.0
AUD 81			0.0	ç	٠.	ir.	-	9	٥	-	-	9	۰	62.0	69.55	235.0
£13	10		11.0		1 4	1 4	. 0	9	ò	9	•		0	9.99	71.0	0.101
AJE 81			45.7	¢	e la	· 16	-	0	٥	a	φ	o	φ	26.0	90.08	110.0
AUG 81			27.5	•	o Le	, ,	. 0	•	M	-	-	٥	ы	0.89	103.0	462.0
AUG 91			34.4	۰ د	7.4	2.	٠.	, ,	N	ī	•	٥	•	57.0	83.5	20210
AUG BI			27.70	•	<u>-</u>	. !	-	00		¢	٥	٥	٥	57.0	74.5	193.0
AUS B1			90,00	, .		. 1	• <		•	÷	٥	¢	3	60.0	83,0	3.62.0
SEP 81	۰.	101.1	N	: 4		o ⊀	, -	. 0	-	•	٥	₽	0	77.0	92.0	186.0
SET	0 10	4.66	0.64	•	45	מו	4 6		-	٥	¢	φ	0	69.0	98'9	170.0
36.	٠	167.0	74.8		ı þ	-	ح. د	0	÷	÷	п	ø	9	0.00	71.0	240.0
4. 4.	4	110.4		•	1	י ר	» н	Q	¢	-	G	٥	-	53.0	94.6	322.0
45	94.0	71.0	4 / 4		,	9	, ,	Ģ	٥	Þ	٥	ø	÷	52.0	64.0	116.0
9		4			, v		. <	-	ò	4	۰	c	٥	50.0	76.0	200.0
SEP 81	103 31	87.0	30.0	e en	9 00	91	; m	. 0	-	÷	•	c	φ	42+0	87.0	197.0
SUBMINEY TRITALS 18	541 OB1	89.0	8.44	^	561	90 10	2.8	귝	10	7	15	4	4	9.0		467.0
					:											

PHRUMBER OF MANEASIRED DRGARISASI NEADURBER OF LENGINS) HIN-SUBSTESS LCHOTH X-NEAR LEWITH) HED-MEDIAR LENGIN SU-SIGNWARP REVXATION) KAX-GREATESY LEMGIN NASHAIR NOT AVAILABLE

TABLE 4.4-16 LENGTH-FREQUENCY DISTRIBUTION OF WHITE CKAPPIE COLLECTED DURING IMPINGEMENT SAMPLING AT THE DRESDEN SLATION, JUNE-SEPTEMBER 1981.

		Xen	182.0	184.0	174.9	204.0	0.000	180.0	183,0	197.0	196.0	203.0	23/+0	164.0	184.0	275.0	205.0	197.0	170.0	205,0	206.0	201.0	210.0	206.0	300.0	226.0	145.0	206.9	245.0	238.0	211,0	245.0	
1584.0		MED	166.0	44.5	151.0	95.0	\$ 1.6	164.5	160.0	126.5	158,0	142.0	130.5	143.0	115.0	152,5	170.0	130.0	11.6	138,0	148.0	156.0	140.0	145.0	138.0	142.0	148.0	143.5	150.0	135.0	167.0		
		NI N	150.0	78.0	80.0	82,0	0,12	71.0	6.6	9.55	110.0	44.0	56.0	46.0	46.0	91.0	98.0	57.0	48.0	59.0	106.0	47,0	51.0	67.0	911.0	110.0	46,0	9550	6.8%	100.0	122.0	44.0	
	290.0	6.666	9	0	٥	٥	٠	٥	٥	¢	0	٥	٥	9	٥	٥	٥	0	0	٥	٥	۰	φ	٠	٥	¢	Đ	Ф	ò	÷	c	c	
	260.0	289.9	0	٥	٠	٥	¢	Ф	•	0	0	¢	٥	۰	¢	0	0	c	٥	Φ	c	Ф	٥	٥	ò	.0	٥	0	0	0	٥	٥	
	230.6	61600	•	٥	•	0	٠	c	o	e	c	٥	-	t	ф	ċ	٥	Ċ	o	۰	٥	٥	٥	9	ò	۰	9	٥	ĭ	-	0	۳	
(HH)	200.0	229.4	٥	0	۵	-	-	ç	Þ	œ	ç	-	œ	¢	٥	0		¢	Ð	-	67	~	-	. - 1	- 1	14	9	-	ð	٥	0	15	
	170.0	6.661	_	4	N	N	9	10	a.	•	10	4	^	-	ניי	4	!	Ľ	7	Ċŧ	ja,	m	7	φ	ı -	4	Ç	N	۵	i)	12	143	!
LENDTH JRTERVALS	140.0	169.9	-1	7	,	4	N	14	7	4	4	F)	۰	10	7	٥	≠r	4	12	12	10	0.4	11	16	4	12	Ĺ1	'n	Ŗ	lio.	ā	246	
רבי רבי	9.016	9.65.1	0	F)	cı	*	47	62	4	12	•	^	٠	٠	9	n	'n	IO.	12	10	φ	ক	۰	æ	ð	<u>۴</u>	٥	vs	1.1	-	7.1	123	
	80.0	109,9	٥	15	m	61	21	-	ι÷	Ľ,	٥	(V	er)	ŀι	49	N	Ħ	m	•	ė	-	¢	М	r	9	9	¢	Ð	7	-1	0	¢	
	20.0	61.62	0	#	0	o	o	ᄪ	٥	ø	0	2	Ç	φ	N	٥	٠	N	0	-	ò	٥	•	-	lω	٥	1-1	**	2	٥	e	7	
	20,0	9.1 9.1	÷	0	0	o	e	ė	0	1	0	-	٥	¢	#	ç	o	c	-1	0	٥	ᅖ	ø	Q	0	o	٥	o	0	\$	ټ	и	
		## 	22.6	40.4	533.3	35.0	40.6	26.4	29.0	34,9	22,7	37+7	40.3	26.3	38.2	23.7	35.6	41.1	30.2	2012	26.32	33.9	40.3	98.80	40.7	9.00	B* + F	33.0	34.7	30.00	22,1	35.3	
		× ;	146.0	121-1	140.6	112,1	116.5	154.0	150.0	12H,B	108.0	141.5	137.0	143,7	118.7	146.8	0.751	130.5	9.041	141.1	156.1	150.2	136.2	150.1	130.1	145.3	117.7	143.43	146.9	157,1	160.8	711 140.9	
	:	2 :	N	ğ	4	9	32	200	N N	ę.	45	90	ê	FI C	3	8	27 M	17	36	H	7	13	13 23	3		£	7	÷	ŝ	2	Ħ	711	
		۱ ۵	0	S	۰	26	F	Ф	•	۰	4,	•	3 5 -	٥	٥	٥	φ.	¢	٥	٠	٥	¢	9	0	٥	40	o	٥	۰	-	12	417	
	3	1	15 JUN 81	Š		24 5	Ž,		Ħ	=	Ξ.	Ę		=	ij	₩ 4	g i	₩ 4		ell6	AUG	8		904	SE.	10 SEP 81	8	17 SFP 81	0. 10. 10.	3	6) 15	SUPPROBY FULLS	
,																																ō.	

P-MUNGER OF UNNESSURED DEGANISMS!
A-MUNDER OF ELNOTHS! MIN-SURFIEST LENGTH
X=NFAM FUNGYMS: MED-WEDIAN LENGTH
HO-SCANDARD DEVIATIONS MAX-GREATEST FFNOTH
NA-DALA NUL AVAILABLE

TABLE 4.4-17 INCIDENCE OF PHYSICAL ABNORMALITIES, DISEASE OR PARASITES OF FISH COLLECTED DURING IMPINGEMENT SAMPLING AT THE DRESDEN STATION, JUNE-SEPTEMBER 1981.

			Total C	atch ^a _
Species	Physical Abnormality	Disease or Parasite	Number Affected	Percent Affected
Gizzard shad	Skoliosis		1	<0.1
Northern pike		<u>Meascus</u> sp. (Blackspot)	4	6.8
Carp	Deformed back		1	<0.1
Golden shiner		Neascus sp.	1	2.4

⁽a) Total catch represents combined catch from all months.

TABLE 4.4-18 ESTIMATED NUMBER AND MEIGHT OF ALL FISH TAXA IMPINGED AT UNITS 2/3 INTAKE DURING INDIRECT OPER OPERATION, DRESDEN STATION, 15 JUNE - 30 SEPTEMBER 1981.

	 	Tota	- :		를 	9	IMP	7	August	ıst	September	aber
Taxa	Number	9-5	keight (kg)	24	Number	Weight (kg)	Number	(kg)	Number	We 1951 t (kg)	Number	Weight (kg)
CARP	109,589	17.86	702, 313	29.0	2,765	12.205	90,191	495.620	15,187	184.224	446	10.264
GIZZARD SHAD	99,426	4.0	1,178.495	8.7	9,126	226.029	29,082	305.629	25,019	261.219	36,199	365.618
CHAKNEL CATFISH	6,179	2.7	162,091	9	250	5. 5	3,960	90.06	1,214	₩ •0•89	754	28,564
WHITE CRAPPIE	3,069	1,4	101.340	, ,	8	13.181	666	31.845	775	26.003	808	30.311
FRESHWATER DRUM	2,171	1.0	19.819	8	8	1.408	721	4.883	527	4.903	885	8.625
EMERALD SHINER	1,516	0.7	1	•	176		949	•	230		161	ı
BLACK CRAPPIE	835	, 0	27.003	1	131	3.270	426	13.318	252		\$2	0.671
BLACK BULLHEAD	780	0.3	9.920	٥.	589	7.344	62	1.457	18		15	0.428
STONECAT	589	0.3	15.155	9.0	69	3, 312	213	5.069	159		124	3.240
SHOR LHEAD REDHORSE	8	0,7	126.102	5.2	40	0.048	70	23.750	266		146	35.400
CARPSUCKER SP.	292	0.1	3.790	0.2	II	0, 307	•	, ,	H		2.68	3.293
	32	-	5 800	0.5	96	2,652	6	608	17		86	1.793
SALO NOTHER	212	; =	200	. ·	94	503.3	120	707	38		200	, M
TPOUT OF PER	2013			? =	Š	000	100	0 KAR	15		R	500
COLDEN CUINCE	69	; =	10141	;			103	,	7.0		3 %	
COLUMN OF INCK	707			,	7	950	3 5	476 0	2 0		5 8	200
CRANGES MULTED SUMPLISH	<u>& 7</u>		755.0	;;	• •	0,0,0	S.	0.64	8		8 2	9.4
TEELUM BASS	X	;;	00°°		FT :	250.0	e;	1.263	ן ת		₽,	200
GREEN SUMFISH	11	0.1	0.870	;;	35	0.00	êî.	0.350	22		T :	A) ()
RIVER CARPSUCKER	7.7	0.	19.692	œ.	m	0.042	Ó	,	8		ਲ	8.439
BULLITEAD MINNOW	96	ô.		ı	¢	ı	¥2	ı	23		₹	ı
STRIPED BASS	61	÷.	0.549	÷.	a	ı	角	0.155	22		o	ı
LARGEMOUTH BASS	66	<u>ခို</u>	2.016	0.1	~	0.112	43	0.221	£		0	1
PUILLBACK	57	0.1	8.545	ð. 0	면	0.435	23	5.010	13		য়	908.0
SKIPJACK HERRING	\$	 9	0.924	ô.1	٥	1	4	0.033	0		\$	0.885
CRAPPLE SP.	47		1	,	0	ı	43	ı	4		0	ı
BLUNTNOSE MINNOW	46	0,1	1	ı	9	ı	27	,	13		0	,
SMALLMOUTH RASS	8	0.1	0.475	9	16	6.102	12	0.190	4		4	0.015
BOWFIN	#	(0,1	0.669	<u>6</u>	19	0.371	12	0.238	0		0	ı
GOLDEN REDHORSE	62	.0°	3,819	0.2	Ċ	ı	16	0.732	13		0	
ROCK BASS	56	6 1.	0.486	6,1	10	0.022	ф	0.120	₹		₩.	0,300
RED SHINER	92	÷.	1	ı	0	ı	₩		18		₩.	
SPOTTIN SHINER	52	9	1	1	2	ı	83	ı	4		0	ı
TADPOLE, MADIOM	24	6.1	0.117	9 .	0	ı	91	0.093	4	0.013	4	0.011
LUNGHOSE GAR	51	÷.	1.247	0.1	M	0.614	∞	0.558	0		8	0.075
SILVER REDHORSE	16	6.1	5.804	0.5	0	,	∞	2.418	٥	ı	œ	3,386
CREFK CHUB	27	¢0,1	0.030	 	•	ı	4	1	T	ı	4	₽0.0
SMALLMOUTH BUFFALO	10	÷	0.160	¢0,1	10	0.160	•	,	0	ı	_	ı
REDHOR SC. SP.	01	6 1.6	0.080	6.1	1	0.080	=	ı	₽	•	0	,
GOI: DF 15H	6	4.0	0,678	.0°	٥	ı		1	6	0.678	¢	ı
SPOTTAIL SHINER	8	40.1		ı	0	•	8	1	Φ	1	•	1
YELLON BULLIEAD	900		0.053	0.	బ	1	0	1	0	ı	æ	0.053
8800K S11 VERSTOF	100	0,	0.016	 ∀	_	,	5	,	· C	•) O	619.0
	ı		4		!		,		,)	:

TABLE 4.4-18 (CONT.)

		Total	ia)		June	o.	Jul	λı	August	Ist	September	nber
Taxa	Number	946	Weight (kg)	. 88	Kunber	Veright (kg)	Number	Welght (kg)	Number	Weight (kg)	Number	Weight (kg)
HREADFIN SHAD	7	40.1	0.124	<0.1	67	0.035	0	,	4	0.089	9	
SRASS PICKEREL	7	0,	0.132	0.1	60	0.019	0	,	0	ı	4	0.113
YPRINIDAE	7	9	,	•	n	1	•	,	- 7		0	
ORNYHFAD CHUB	7	0	0.475	. 0.1	m	0.208	*	0.267	0	ı	0	ı
UMPKINSEED		6.	0.210	.0	m	0.074	₹†	0.136	0	ı	0	ı
SUCKERMOUTH MINNOW	9	÷.1			w		0		0		0	1
RAINBON SMELT	₽.	¢0:1	0.019	60.1	ټ	1	0	1	0	1	•	0.019
4RP x COUDFISH	₩.	60.1	1,329	0.1	9	1	0	1	₹#	1,329	0	1
COMMON SHINER	4	.0°			ت	t	₹7	ι	0	1	0	ι
WHITE SUCKER	4	<0.1	0.036	÷0.	0	ı	4	90.0	0		0	•
IGMOUTH BUFFALO	4	0,1	0.581	ê.	0		2	t	0	ι	₹	0.581
SPOTTED SUCKER	4	6.1	1.253	0.1	ن	,	0	,	4	1.253	0	,
AHITE BASS	4	60.1	0.023	0°.1	0	ı	0	1	0		4	0.023
FELLOW PERCH	ক	60,1	0.058	¢0.1	0		₩	0.058	O	ı	o.	
TOTAI.	225,879		2,421.150		14,242	284,344	127,334	990.870	44,108	640.432	40,195	505,504

(a) Weight not taken.

TABLE 4.4-19 A COMPARISON OF ESTIMATED FISH IMPINGEMENT UNDER DIFFERENT OPERATING MODES AT UNITS 2/3 INTAKE, DRESDEN STATION, 1977-1981. (NUMBERS REPRESENT IMPINGEMENT FROM MID-JUNE THROUGH SEPTEMBER OF EACH YEAR)^a

•	1977		1978		1981	
	Va <u>riable Blowd</u> Number	own Scheme	Variable Blowde Numbero	own Scheme	(Indirect Open	en Cycle)
Total	594,801	100	256,511	100	225,879	100
Gizzard shaɗ	587,380	98.8	246,441	96.1	99,426	44.0
Skipjack herring	1,578	0.3	28	<0.1	49	<0.1
Carp	198	<0.1	202	0.1	108,589	48.1
Emerald shiner	843	0.1	1,524	0.6	1,516	0.7
Channel catfish	887	0.1	3,035	1.2	6,178	2.7
Bluegill	480	0.1	560	0.2	222	0.1
White crappie	627	0.1	771	0.3	3,069	1.4
Freshwater drum	1,027	0.2	2,021	0.8	4 2,171	1.0

 ⁽a) Impingement for the 15-30 June period each year was calculated from the total June estimate by direct proportion.
 (b) Number represents estimated impingement for August and September only.